Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (1): 81-87    DOI: 10.13306/j.1672-3813.2017.01.012
  本期目录 | 过刊浏览 | 高级检索 |
网络上具有一般直接免疫的SIRS传染病模型分析
张斐, 吴庆初, 曾广洪
江西师范大学数学与信息科学学院,南昌 330022
An Analysis of an SIRS Epidemic Model with General Direct Immunization in Networks
ZHANG Fei, WU Qingchu, ZENG Guanghong
College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, China
全文: PDF(699 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 考虑复杂网络上具有一般直接免疫率的SIRS传染病模型。由地方病平衡点的存在性,确定了传染病的流行阈值λc,并且通过构造合适的李雅普诺夫函数证明:当λ≤λc时,无病平衡点全局渐近稳定;当λ>λc时,地方病平衡点全局渐近稳定。根据免疫率的分布,提出了一致性直接免疫和目标性直接免疫。结果表明,在平均免疫率相等的条件下存在免疫丧失率的临界值δc,当δ<δc(δ>δc)时,目标性免疫的流行阈值小于(大于)一致性免疫的流行阈值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张斐
吴庆初
曾广洪
关键词 复杂网络SIRS模型全局稳定性异质免疫率    
Abstract:We consider an SIRS epidemic model with a general direct immunization rate on networks. By constructing suitable Lyapunov functions, we find that the dynamical behvaior of the model is completely determined by the epidemic threshold λc. When λ≤λc, the disease-free equilibrium is globally asymptotically stable; when λ>λc, the endemic equilibrium is globally asymptotically stable. In addition, we propose a uniform direct immunization and a targeted direct immunization. The results show that under the same average immunization rate s there exists a critical immunization-lost rate δc so that the epidemic threshold of the targeted direct immunization is smaller (larger) than that of the uniform direct immunization if δ<δc(δ>δc).
Key wordscomplex network    SIRS model    global stability    heterogeneous immunization rate
收稿日期: 2015-10-12      出版日期: 2025-02-24
ZTFLH:  O29  
  N94  
基金资助:国家自然科学基金(61663015, 61203153); 江西省自然科学基金(20161BAB202051)
通讯作者: 吴庆初(1979-),男,江西都昌人,博士,副教授,主要研究方向为生物数学与复杂网络。   
作者简介: 张斐(1992-),女,江西萍乡人,硕士研究生,主要研究方向为复杂网络。
引用本文:   
张斐, 吴庆初, 曾广洪. 网络上具有一般直接免疫的SIRS传染病模型分析[J]. 复杂系统与复杂性科学, 2017, 14(1): 81-87.
ZHANG Fei, WU Qingchu, ZENG Guanghong. An Analysis of an SIRS Epidemic Model with General Direct Immunization in Networks[J]. Complex Systems and Complexity Science, 2017, 14(1): 81-87.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.01.012      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I1/81
[1] Wang X F,Chen G R. Complex networks: small-world, scale-free and beyond[J].Circuits and Systems Magazine,IEEE,2003,3(1): 6-20.
[2] Newman M E J. The structure and function of complex networks[J].SIAM Rev,2003,45(2):167-256.
[3] Pastor-Satorras R,Vespignani A. Epidemic spreading in scale-free networks[J].Phys Rev Lett,2001,86(14): 3200-3203.
[4] Newman M E J.The spread of epidemic disease on networks[J].Phys Rev E,2002,66(1):016128.
[5] Pastor-Satorras R, Castellano C, Van Mieghem P, et al. Epidemic processes in complex networks[J].Rev Mod Phys, 2015, 87(3): 925.
[6] Xia C Y,Wang Z, Sanz J,et al. Effects of delayed recovery and nonuniform transmission on the spreading of diseases in complex networks[J].Physica A,2013,392:1577-1585.
[7] Fu X C, Small M, Walker D M, et al. Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization[J].Phys Rev E, 2008, 77(3): 036113.
[8] 李婵婵, 蒋国平, 宋玉蓉. 动态小世界社团网络上的病毒传播研究[J].复杂系统与复杂性科学, 2014, 11(3): 33-39.
Li Chanchan, Jiang Guoping, Song Yurong. Epidemic spreading in dynamic small-world networks with commuity structure[J].Complex Systems and Complexity Sicence, 2014, 11(3): 33-39.
[9] Zhang H F, Xie J R,Tang M, et al.Suppression of epidemic spreading in complex networks by local information based behavioral response[J].Chaos,2014,24(4):043106.
[10] Grassly N C, Fraser C, Garnett G P. Host immunity and synchronized epidemics of syphilis across the United States[J].Nature, 2005, 433(7024): 417-421.
[11] Xu R,Ma Z E,Wang Z P.Global stability of a delayed SIRS epidemic model with saturation incidence and temporary immunity[J].Comput Math Appl,2010, 59:3211-3221.
[12] Nagy V. Mean-field theory of a recurrent epidemiological model[J].Phys Rev E, 2009,79(6):066105.
[13] 夏承遗,刘忠信,陈增强,等.复杂网络上带有直接免疫的SIRS类传染模型研究[J].控制与决策,2008, 23(4): 468-472.
Xia Chengyi, Liu Zhongxin, Chen Zengqiang, et al. SIRS epidemic model with direct immunization on complex networks[J].Control and Decision, 2008, 23(4): 468-472.
[14] 石定琴,柯林,周金贵,等. 带直接免疫的SIRS模型中疾病以2种途径传播的动力学分析[J].江西师范大学学报:自然科学版,2013,37(6):637-640.
Shi Dingqin, Ke Lin, Zhou Jingui, et al. The dynamical analysis for epidemic transmission on an SIRS model with direct immunization via two distinct routes[J].J Jiangxi Norm Univ (Nat Sci Ed), 2013,37(6):637-640.
[15] Yu R Z, Li K Z, Chen B D, et al. Dynamical analysis of an SIRS network model with direct immunization and infective vector[J].Adv Differ Equ-NY, 2015, 2015(1): 1-14.
[16] Chen L J, Sun J T.Global stability and optimal control of an SIRS epidemic model on heterogeneous networks[J].Physica A,2014, 410:196-204.
[17] Peng X L, Xu X J, Fu X C, et al. Vaccination intervention on epidemic dynamics in networks[J].Phys Rev E, 2013, 87(2): 022813.
[18] Michalik D E, Steinberg S P, LaRussa P S, et al. Primary vaccine failure after 1 dose of varicella vaccine in healthy children[J].J Infect Dis,2008,197: 944-949.
[19] 王伟, 杨慧, 龚凯, 等. 复杂网络上的局域免疫研究[J].电子科技大学学报, 2013, 42(6): 817-830.
Wang Wei, Yang Hui, Gong Kai, et al. Local immunization algorithm on complex networks[J].Journal of University of Electronic Science and Technology of China, 2013, 42(6): 817-830.
[20] Li K Z,Xu Z P, Zhu G H, et al. Global stability of a susceptible-infected-susceptible epidemic model on networks with individual awareness[J].Chin Phys B,2014,23(11):118904.
[21] Li C H, Tsai C C, Yang S Y. Analysis of epidemic spreading of an SIRS model in complex heterogeneous networks[J].Commun Nonlinear Sci Numer Simulat, 2014, 19(4):1042-1054.
[22] 张海峰,王阳阳,汪秉宏.行为反应对复杂网络上传染病动力学的影响[J].复杂系统与复杂性科学,2012,9(3):13-21.
Zhang Haifeng, Wang Yangyang, Wang Binghong. The impacts of behavioral responses on the spread of infectious diseases on complex networks[J].Complex Systems and Complexity Sicence, 2012,9(3):13-21.
[23] Wu Q C, Zhang H F,Zeng G H. Responsive immunization and intervention for infectious diseases in social networks[J].Chaos,2014,24(2):023108.
[24] Pastor-Satorras R, Vespignani A. Immunization of complex networks[J].Phys Rev E, 2002, 65(3): 036104.
[25] Lou J, Ruggeri T. The dynamics of spreading and immune strategies of sexually transmitted diseases on scale-free network[J].J Math Anal Appl, 2010, 365(1): 210-219.
[26] 王琴, 祝光湖, 傅新楚. 有向网络上流行病阈值比较和免疫分析[J].复杂系统与复杂性科学, 2012, 9(4): 26-33.
Wang Qin, Zhu Guanghu, Fu Xinchu. Comparison of epidemic thresholds on directednetworks and immunizatio nanalysis[J].Complex Systems and Complexity Sicence, 2012, 9(4): 26-33.
[27] Barabási A L, Albert R. Emergence of scaling in random networks[J].Science, 1999,286(5439):509-512.
[28] 陈淑芳,吴庆初.网络上局部行为反应对爆发阈值的影响[J].江西师范大学学报:自然科学版,2015,39(5):531-535.
Chen Shufang, Wu qingchu. The impact of local behavioral response on epidemic spreading in networks[J].J Jiangxi Norm Univ Nat Sci Ed, 2015,39(5):531-535.
[1] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[2] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[3] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[4] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[5] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[6] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[7] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[8] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[9] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[10] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[11] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[12] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[13] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[14] 杨文东, 黄依宁, 张生润. 基于多层复杂网络的RCEP国际航线网络特征分析[J]. 复杂系统与复杂性科学, 2023, 20(3): 60-67.
[15] 任翠萍, 杨明翔, 张裕铭, 谢逢洁. 快递安全事故致因网络构建及结构特性分析[J]. 复杂系统与复杂性科学, 2023, 20(2): 74-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed