Influence of Structure Inside Hyperedge on Robustness of Scale-free Hypernetwork
ZHOU Bin1,2, MA Fuxiang1, GAO Shujie1,2, MA Xiujuan1, LI Mingjie1,2
1. College of Computer, Qinghai Normal University, Xining 810016, China; 2. The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining 810008, China
Abstract:In the existing work on the robustness of the hypernetworks, researchers have not considered the effect of internal structure on the robustness of the hypernetworks. Aiming at this problem, this paper proposes a capacity-load model that can describe the relationship between the internal structure and the robustness of the hypernetworks. By simulation experiments, we obtain the robustness of the k-uniform scale-free hypernetwork under three modes: preferential connection, random connection, and completed connection within hyperedges. Analysis of the comparison experiments reveals that the robustness of the scale-free hypernetwork is related to the ways of nodes' connection, the size k of the nodes, and the number of ordinary edges mk within the hyperedges.The results show that the internal structure of the hyperedges has a large impact on the overall robustness of the scale-free hypernetworks.
周斌, 马福祥, 高淑洁, 马秀娟, 李明杰. 超边内部结构对无标度超网络鲁棒性的影响[J]. 复杂系统与复杂性科学, 2024, 21(3): 1-8.
ZHOU Bin, MA Fuxiang, GAO Shujie, MA Xiujuan, LI Mingjie. Influence of Structure Inside Hyperedge on Robustness of Scale-free Hypernetwork[J]. Complex Systems and Complexity Science, 2024, 21(3): 1-8.
[1] REN H P, GAO Y, HUO L, et al. Frequency stability in modern power network from complex network viewpoint[J]. Physica A, 2020, 545(3): 123558. [2] WANG T, CHENG H, WANG X. A link addition method based on uniformity of node degree in interdependent power grids and communication networks[J]. Physica A, 2020, 560(5): 125112. [3] CAI W X, LIANG F F, WANG Y C, et al. An innovative approach for constructing a shipping index based on dynamic weighted complex networks[J]. Physica A, 2021, 578(5): 126101. [4] 毛昌梅, 韩景倜, 刘举胜. 基于复杂网络的银行波动溢出效应研究[J]. 复杂系统与复杂性科学, 2020, 17(2): 11-21. MAO C M, HAN J T, LIU J S. Volatility spillover effect of chinese listed commercial banks based on complex network[J]. Complex Systems and Complexity Science, 2020, 17(2): 11-21. [5] 王哲, 李建华, 康东, 等. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26+46. WANG Z, LI J H, KANG D, et al. Review on strategies enhancing the robustness of complex network[J]. Complex Systems and Complexity Science, 2020, 17(3): 1-26,46. [6] WANG S L, LÜ W Z, ZHANG J H, et al. Method of power network critical nodes identification and robustness enhancement based on a cooperative framework[J]. Reliability Engineering & System Safety, 2021, 207:107313. [7] GAO J, BULDYREV S V, HAVLIN S, et al. Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes[J]. Physical Review E, 2012, 85(6): 066134. [8] 陈关荣. 探索复杂网络的高阶拓扑及其应用[R]. 北京: 中国指挥与控制学会, 2021. CHEN G R. Exploring higher-order topologies of complex networks and applications[R]. Beijing: Chinese Institute of Command and Control. [9] FEDERICO B, GIULIA C, IACOPO I, et al. Networks beyond pairwise interactions: structure and dynamics[J]. Physics Reports, 2020, 874: 1-92. [10] SINAN G A, CLIFF J, CARLOS O M, et al. Hypernetwork science via high-order hypergraph walks[J]. EPJ Data Science, 2020, 9(1): 519-535. [11] WANG J W, RONG LL, DENG Q H, et al. Evolving hypernetwork model[J]. The European Physical Journal B, 2010, 77(4): 493-498. [12] ESTRADA E, RODRÍGUEZ-VELÁZQUEZ J A. Subgraph centrality and clustering in complex hyper-networks[J]. Physica A, 2006, 364(3): 581-594. [13] 索琪, 郭进利. 基于超图的超网络:结构及演化机制[J]. 系统工程理论与实践, 2017, 37(3): 720-734. SUO Q, GUO J L. The structure and dynamics of hypernetworks[J]. Systems Engineering-Theory & Practice, 2017, 37(3): 720-734. [14] 李甍娜, 郭进利, 卞闻, 等. 网络视角下的唐诗[J]. 复杂系统与复杂性科学, 2017, 14(4): 66-71. LI M N, GUO J L, BIAN W, et al. Tang poetry from the perspective of network[J]. Complex Systems and Complexity Science, 2017, 14(4): 66-71. [15] 胡枫, 赵海兴, 何佳倍, 等. 基于超图结构的科研合作网络演化模型[J]. 物理学报, 2013, 62(19): 547-554. HU F, ZHAO H X, HE J B, et al. An evolving model for hypergraph-structure-based scientific collaboration networks[J]. Acta Physica Sinica, 2013, 62(19): 547-554. [16] 胡枫, 刘猛, 赵静, 等. 蛋白复合物超网络特性分析及应用[J]. 复杂系统与复杂性科学, 2018, 15(4): 31-38. HU F, LIU M, ZHAO J, et al. Analysisand application of the topological properties of protein complex hypernetworks[J]. Complex Systems and Complexity Science, 2018, 15(4): 31-38. [17] Wu Z Y, Duan J Q, Fu X C. Synchronization of an evolving complex hyper-network[J]. Applied Mathematical Modelling, 2014, 38(11/12): 2961-2968. [18] 巩云超, 李发旭, 周丽娜, 等. 在线社交超网络的信息全局传播模型[J]. 电子科技大学学报, 2021, 50(3): 437-445. GONG Y C, LI F X, ZHOU L N, et al. Global Dissemination of Information Based on Online Social Hypernetwork[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(3): 437-445. [19] 马秀娟, 赵海兴, 胡枫. 基于超图的超网络相继故障分析[J]. 物理学报, 2016, 65(8): 374-383. MA X J, ZHAO H X, HU F. Cascading failure analysis in hyper-network based on the hypergraph[J]. Acta Physica Sinica, 2016, 65(8): 374-383. [20] MA X J, MA F X, YIN J, et al. Cascading failures of k uniform hyper-network based on the hyper adjacent matrix[J]. Physica A, 2018, 510: 281-289. [21] CHEN Y, MA X J, MA F X, et al. The capacity load model of k-uniform hyper-network based on equal load distribution[J]. Journal of Physics: Conference Series, 2021, 1828(1): 012060. [22] 罗海秀, 赵海兴, 肖玉芝, 等. 基于超图的公交超网络拓扑特性及鲁棒性分析[J]. 西南大学学报(自然科学版), 2021, 43(10): 181-191. LUO H X, ZHAO H X, XIAO Y Z. A hypergraph-based analysis of the topology and robustness of bus hypernetworks[J]. Journal of Southwest University (Natural Science Edition), 2021, 43(10): 181-191. [23] MOTTER A E, CHENG L Y. Cascade-based attacks on complex networks[J]. Physical Review E, 2002, 66(6): 065102. [24] BERGE C. Graphs and Hpergraphs[M]. New York: Elsevier, 1973. [25] BERGE C, STERBOUL F. Equipartite colorings in graphs and hypergraphs[J]. Journal of Combinatorial Theory, Series B, 1977, 22(2): 97-113. [26] BRETTO A. Hypergraph Theory[M]. Heidelberg: Springer, 2013. [27] 胡枫, 赵海兴, 马秀娟. 一种超网络演化模型构建及特性分析[J]. 中国科学: 物理学 力学 天文学, 2013, 43(1): 16-22. HU F, ZHAO H X, MA X J. An evolving hypernetwork model and its properties[J]. Scientia Sinica(Physica, Mechanica& Astronomica), 2013, 43(1): 16-22.