Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (3): 1-8    DOI: 10.13306/j.1672-3813.2024.03.001
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
超边内部结构对无标度超网络鲁棒性的影响
周斌1,2, 马福祥1, 高淑洁1,2, 马秀娟1, 李明杰1,2
1.青海师范大学计算机学院,西宁 810016;
2.藏语智能信息处理及应用国家重点实验室,西宁 810008
Influence of Structure Inside Hyperedge on Robustness of Scale-free Hypernetwork
ZHOU Bin1,2, MA Fuxiang1, GAO Shujie1,2, MA Xiujuan1, LI Mingjie1,2
1. College of Computer, Qinghai Normal University, Xining 810016, China;
2. The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining 810008, China
全文: PDF(1861 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 鉴于现有超网络鲁棒性的研究中并未考虑超边内部结构对超网络鲁棒性的影响,提出一种能描述超边内部结构与超网络鲁棒性关系的容量-负载模型,并通过仿真实验获得了超边内节点在优先连接、随机连接、全连接3种方式下,k均匀无标度超网络的鲁棒性。通过对比分析发现,无标度超网络的鲁棒性与其超边内节点的连接方式密切相关,同时也与超边内节点的规模k以及超边内部普通边的数量mk有关。研究结果表明,超边内部结构对无标度超网络整体的鲁棒性有较大的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周斌
马福祥
高淑洁
马秀娟
李明杰
关键词 无标度超网络超边内部结构容量-负载模型级联故障鲁棒性    
Abstract:In the existing work on the robustness of the hypernetworks, researchers have not considered the effect of internal structure on the robustness of the hypernetworks. Aiming at this problem, this paper proposes a capacity-load model that can describe the relationship between the internal structure and the robustness of the hypernetworks. By simulation experiments, we obtain the robustness of the k-uniform scale-free hypernetwork under three modes: preferential connection, random connection, and completed connection within hyperedges. Analysis of the comparison experiments reveals that the robustness of the scale-free hypernetwork is related to the ways of nodes' connection, the size k of the nodes, and the number of ordinary edges mk within the hyperedges.The results show that the internal structure of the hyperedges has a large impact on the overall robustness of the scale-free hypernetworks.
Key wordsscale-free hypernetwork    internal structure of hyperedge    capacity-load model    cascading failures    robustness
收稿日期: 2022-04-15      出版日期: 2024-11-07
ZTFLH:  O157.5  
  N945.15  
基金资助:青海省基础研究计划基金(2019-ZJ-7012);国家自然科学基金青年科学基金(11801296,61603206)
通讯作者: 马秀娟(1977-),女,青海西宁人,博士,教授,主要研究方向为复杂网络、超图理论、超网络应用。   
作者简介: 周斌(1997-),男,山东枣庄人,博士研究生,主要研究方向为复杂网络、超网络理论及应用。
引用本文:   
周斌, 马福祥, 高淑洁, 马秀娟, 李明杰. 超边内部结构对无标度超网络鲁棒性的影响[J]. 复杂系统与复杂性科学, 2024, 21(3): 1-8.
ZHOU Bin, MA Fuxiang, GAO Shujie, MA Xiujuan, LI Mingjie. Influence of Structure Inside Hyperedge on Robustness of Scale-free Hypernetwork[J]. Complex Systems and Complexity Science, 2024, 21(3): 1-8.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.03.001      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I3/1
[1] REN H P, GAO Y, HUO L, et al. Frequency stability in modern power network from complex network viewpoint[J]. Physica A, 2020, 545(3): 123558.
[2] WANG T, CHENG H, WANG X. A link addition method based on uniformity of node degree in interdependent power grids and communication networks[J]. Physica A, 2020, 560(5): 125112.
[3] CAI W X, LIANG F F, WANG Y C, et al. An innovative approach for constructing a shipping index based on dynamic weighted complex networks[J]. Physica A, 2021, 578(5): 126101.
[4] 毛昌梅, 韩景倜, 刘举胜. 基于复杂网络的银行波动溢出效应研究[J]. 复杂系统与复杂性科学, 2020, 17(2): 11-21.
MAO C M, HAN J T, LIU J S. Volatility spillover effect of chinese listed commercial banks based on complex network[J]. Complex Systems and Complexity Science, 2020, 17(2): 11-21.
[5] 王哲, 李建华, 康东, 等. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26+46.
WANG Z, LI J H, KANG D, et al. Review on strategies enhancing the robustness of complex network[J]. Complex Systems and Complexity Science, 2020, 17(3): 1-26,46.
[6] WANG S L, LÜ W Z, ZHANG J H, et al. Method of power network critical nodes identification and robustness enhancement based on a cooperative framework[J]. Reliability Engineering & System Safety, 2021, 207:107313.
[7] GAO J, BULDYREV S V, HAVLIN S, et al. Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes[J]. Physical Review E, 2012, 85(6): 066134.
[8] 陈关荣. 探索复杂网络的高阶拓扑及其应用[R]. 北京: 中国指挥与控制学会, 2021.
CHEN G R. Exploring higher-order topologies of complex networks and applications[R]. Beijing: Chinese Institute of Command and Control.
[9] FEDERICO B, GIULIA C, IACOPO I, et al. Networks beyond pairwise interactions: structure and dynamics[J]. Physics Reports, 2020, 874: 1-92.
[10] SINAN G A, CLIFF J, CARLOS O M, et al. Hypernetwork science via high-order hypergraph walks[J]. EPJ Data Science, 2020, 9(1): 519-535.
[11] WANG J W, RONG LL, DENG Q H, et al. Evolving hypernetwork model[J]. The European Physical Journal B, 2010, 77(4): 493-498.
[12] ESTRADA E, RODRÍGUEZ-VELÁZQUEZ J A. Subgraph centrality and clustering in complex hyper-networks[J]. Physica A, 2006, 364(3): 581-594.
[13] 索琪, 郭进利. 基于超图的超网络:结构及演化机制[J]. 系统工程理论与实践, 2017, 37(3): 720-734.
SUO Q, GUO J L. The structure and dynamics of hypernetworks[J]. Systems Engineering-Theory & Practice, 2017, 37(3): 720-734.
[14] 李甍娜, 郭进利, 卞闻, 等. 网络视角下的唐诗[J]. 复杂系统与复杂性科学, 2017, 14(4): 66-71.
LI M N, GUO J L, BIAN W, et al. Tang poetry from the perspective of network[J]. Complex Systems and Complexity Science, 2017, 14(4): 66-71.
[15] 胡枫, 赵海兴, 何佳倍, 等. 基于超图结构的科研合作网络演化模型[J]. 物理学报, 2013, 62(19): 547-554.
HU F, ZHAO H X, HE J B, et al. An evolving model for hypergraph-structure-based scientific collaboration networks[J]. Acta Physica Sinica, 2013, 62(19): 547-554.
[16] 胡枫, 刘猛, 赵静, 等. 蛋白复合物超网络特性分析及应用[J]. 复杂系统与复杂性科学, 2018, 15(4): 31-38.
HU F, LIU M, ZHAO J, et al. Analysisand application of the topological properties of protein complex hypernetworks[J]. Complex Systems and Complexity Science, 2018, 15(4): 31-38.
[17] Wu Z Y, Duan J Q, Fu X C. Synchronization of an evolving complex hyper-network[J]. Applied Mathematical Modelling, 2014, 38(11/12): 2961-2968.
[18] 巩云超, 李发旭, 周丽娜, 等. 在线社交超网络的信息全局传播模型[J]. 电子科技大学学报, 2021, 50(3): 437-445.
GONG Y C, LI F X, ZHOU L N, et al. Global Dissemination of Information Based on Online Social Hypernetwork[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(3): 437-445.
[19] 马秀娟, 赵海兴, 胡枫. 基于超图的超网络相继故障分析[J]. 物理学报, 2016, 65(8): 374-383.
MA X J, ZHAO H X, HU F. Cascading failure analysis in hyper-network based on the hypergraph[J]. Acta Physica Sinica, 2016, 65(8): 374-383.
[20] MA X J, MA F X, YIN J, et al. Cascading failures of k uniform hyper-network based on the hyper adjacent matrix[J]. Physica A, 2018, 510: 281-289.
[21] CHEN Y, MA X J, MA F X, et al. The capacity load model of k-uniform hyper-network based on equal load distribution[J]. Journal of Physics: Conference Series, 2021, 1828(1): 012060.
[22] 罗海秀, 赵海兴, 肖玉芝, 等. 基于超图的公交超网络拓扑特性及鲁棒性分析[J]. 西南大学学报(自然科学版), 2021, 43(10): 181-191.
LUO H X, ZHAO H X, XIAO Y Z. A hypergraph-based analysis of the topology and robustness of bus hypernetworks[J]. Journal of Southwest University (Natural Science Edition), 2021, 43(10): 181-191.
[23] MOTTER A E, CHENG L Y. Cascade-based attacks on complex networks[J]. Physical Review E, 2002, 66(6): 065102.
[24] BERGE C. Graphs and Hpergraphs[M]. New York: Elsevier, 1973.
[25] BERGE C, STERBOUL F. Equipartite colorings in graphs and hypergraphs[J]. Journal of Combinatorial Theory, Series B, 1977, 22(2): 97-113.
[26] BRETTO A. Hypergraph Theory[M]. Heidelberg: Springer, 2013.
[27] 胡枫, 赵海兴, 马秀娟. 一种超网络演化模型构建及特性分析[J]. 中国科学: 物理学 力学 天文学, 2013, 43(1): 16-22.
HU F, ZHAO H X, MA X J. An evolving hypernetwork model and its properties[J]. Scientia Sinica(Physica, Mechanica& Astronomica), 2013, 43(1): 16-22.
[1] 张成军, 姚辉, 雷毅, 夏登辉, 李琪, 沈鑫禹, 钱铭, 余文斌. 高低阶耦合网络的鲁棒性研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 17-22.
[2] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[3] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[4] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[5] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[6] 林兆丰, 李树彬, 孔祥科. 地铁建设对公交系统鲁棒性的影响[J]. 复杂系统与复杂性科学, 2023, 20(1): 66-73.
[7] 卢炯, 许新建. 协同对社会传播的影响[J]. 复杂系统与复杂性科学, 2022, 19(3): 14-19.
[8] 谭桂敏, 汪丽娜, 臧臣瑞. 耦合二分网络识别通信系统流量的时空特征[J]. 复杂系统与复杂性科学, 2022, 19(2): 71-79.
[9] 王哲, 李建华, 康东, 冉淏丹. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26.
[10] 覃炳发, 李科赞. 桂林市公交换乘网络的实证分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 22-30.
[11] 李小林, 许润杰, 娄洁, 许新建. 双层网络上的社会传播[J]. 复杂系统与复杂性科学, 2019, 16(4): 13-18.
[12] 肖琴, 罗帆. 基于复杂网络的两栖水上飞机起降安全风险演化[J]. 复杂系统与复杂性科学, 2019, 16(2): 19-30.
[13] 宋甲秀, 杨晓翠, 张曦煌. 融合邻域鲁棒性及度均衡性的集体影响中心性[J]. 复杂系统与复杂性科学, 2019, 16(1): 26-35.
[14] 吴凌杰, 邹艳丽, 王瑞瑞, 姚飞, 汪洋. 电力信息相互依存网络与单层电网的级联故障比较[J]. 复杂系统与复杂性科学, 2018, 15(3): 11-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed