Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (1): 11-17    DOI: 10.13306/j.1672-3813.2025.01.002
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于K-shell的复杂网络簇生长维数研究
张耀波, 张胜, 王雨萱, 熊聪源
南昌航空大学信息工程学院,南昌 330063
Research on the Cluster-growing Dimension of Complex Networks Based on K-shell
ZHANG Yaobo, ZHANG Sheng, WANG Yuxuan, XIONG Congyuan
School of Information Engineering, Nanchang HangKong University, Nanchang 330063, China
全文: PDF(5798 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 传统簇生长法时间复杂度高、对分形标度关系刻画不够精准,且关键节点在控制网络结构和功能方面具有重要作用。为选择具有代表性的节点来分析网络自相似分形问题,提出一种基于K-shell的复杂网络簇生长法,通过K-shell分解和节点信息熵选取核心层最具影响力节点作为簇生长法的种子节点计算网络的分形维数。实验结果表明所提方法对网络的分形性质刻画得更加细致,能够计算出更加准确的分形维数。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张耀波
张胜
王雨萱
熊聪源
关键词 复杂网络分形K-shell分形维数簇生长法    
Abstract:The traditional cluster-growing method has high time complexity, inaccurate description of fractal scale relationship, and key nodes are important in controlling network structure and function. In order to select representative nodes to analyze the network self-similarity fractal problem, we propose a K-shell-based cluster-growting method of complex networks, in which the most influential nodes in the core layer are selected as the seed nodes of the cluster growth method to calculate the fractal dimension of the network through K-shell decomposition and node information entropy. Experimental results show that the proposed method can perfectly observe the fractal properties of the network and calculate the fractal dimension more accurately.
Key wordscomplex networks    fractal    k-shell    fractal dimension    cluster-growing method
收稿日期: 2023-05-31      出版日期: 2025-04-27
ZTFLH:  N94  
基金资助:国家自然科学基金(61661037);江西省教育厅科技项目(GJJ170575);南昌航空大学研究生创新专项基金(YC2022-053)
通讯作者: 张 胜(1968-),男,湖北黄冈人,博士,教授,主要研究方向为复杂网络分形理论、机会网络、社区发现和人工智能。   
作者简介: 张耀波(1998-),男,江西宜春人,硕士研究生,主要研究方向为复杂网络分形理论、多重分形。
引用本文:   
张耀波, 张胜, 王雨萱, 熊聪源. 基于K-shell的复杂网络簇生长维数研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 11-17.
ZHANG Yaobo, ZHANG Sheng, WANG Yuxuan, XIONG Congyuan. Research on the Cluster-growing Dimension of Complex Networks Based on K-shell[J]. Complex Systems and Complexity Science, 2025, 22(1): 11-17.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.01.002      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I1/11
[1] WATTS D J, STROGATZ S H. Collective dynamics of ‘small world’networks[J]. Nature,1998,393(6684): 440-442.
[2] BARABÁSI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
[3] SONG C, HAVLIN S, MAKSE H A. Self-similarity of complex networks[J]. Nature, 2005, 433(7024): 392-395.
[4] SONG C, GALLOS L K, HAVLIN S, et al. How to calculate the fractal dimension of a complex network: the box covering algorithm[J]. Journal of Statistical Mechanics: Theory and Experiment, 2007(3): P03006.
[5] SHANKER O. Defining dimension of a complex network[J]. Modern Physics Letters B, 2007, 21(6): 321-326.
[6] SHANKER O. Graph zeta function and dimension of complex network[J]. Modern Physics Letters B, 2007, 21(11): 639-644.
[7] GUO L, XU C. The fractal dimensions of complex networks[J]. Chinese Physics Letters, 2009, 26(8): 088901.
[8] ZHANG S Y. Emergence law of self-similar structure of complex system and complex network[J]. Complex System and Complexity Science,2006(4):41-51.
[9] KIMJ S, GOH K I, KAHNG B, et al. A box-covering algorithm for fractal scaling in scale-free networks[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2007, 17(2): 026116.
[10] GAO L, HU Y, DI Z. Accuracy of the ball-covering approach for fractal dimensions of complex networks and a rank-driven algorithm[J]. Physical Review E, 2008, 78(4): 046109.
[11] SUN Y, ZHAO Y. Overlapping-box-covering method for the fractal dimension of complex networks[J]. Physical Review E, 2014, 89(4): 042809.
[12] ZHENG W, YOU Q, LIU F, et al. Fractal analysis of overlapping box covering algorithm for complex networks[J]. IEEE Access, 2020, 8: 53274-53280.
[13] LIU J L, YU Z G, ANH V. Determination of multifractal dimensions of complex networks by means of the sandbox algorithm[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2015, 25(2): 023103.
[14] SONG Y Q, LIU J L, YU Z G, et al. Multifractal analysis of weighted networks by a modified sandbox algorithm[J]. Scientific reports, 2015, 5(1): 1-10.
[15] WEI B, DENG Y. A cluster-growing dimension of complex networks: from the view of node closeness centrality[J]. Physica A: Statistical Mechanics and its Applications, 2019, 522: 80-87.
[16] XIE L X, SUN H, YANG H Y, et al. Key node identification method of complex network based on K-shell[J]. Journal of Tsinghua University(Natural Science Edition),2022,62(5):849-861.
[17] GUO C, YANG L, CHEN X, et al. Influential nodes identification in complex networks via information entropy[J]. Entropy, 2020, 22(2): 242.
[18] ZHANG J, ZHANG Q, WU L, et al. Identifying influential nodes in complex networks based on multiple local attributes and information entropy[J]. Entropy, 2022, 24(2): 293.
[19] FAN W L, LIU Z G, HU P. Identifying node importance based on information entropy in complex networks[J]. Physica Scripta, 2013, 88(6): 065201.
[20] NEWMAN M E J, WATTS D J. Renormalization group analysis of the small-world network model[J]. Physics Letters A, 1999, 263(4-6): 341-346.
[21] ROZENFELD H D, SONG C, MAKSE H A. Small-world to fractal transition in complex networks: a renormalization group approach[J]. Physical review letters, 2010, 104(2): 025701.
[1] 詹秀秀, 叶涛, 刘闯, 刘雪梅. 农产品贸易网络中国家影响力分析与研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 26-32.
[2] 胡福年, 杨伟丹, 陈军. 基于关键节点的电力信息物理系统鲁棒性评估[J]. 复杂系统与复杂性科学, 2025, 22(1): 43-49.
[3] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[4] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[5] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[6] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[7] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[8] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[9] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[10] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[11] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[12] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[13] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[14] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[15] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed