Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (1): 33-42    DOI: 10.13306/j.1672-3813.2025.01.005
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于动态级联失效的开发者协作网络鲁棒性研究
周琴, 徐桂琼
上海大学管理学院,上海 200444
Research on the Robustness of Developer Collaboration Network Based on Dynamic Cascading Failure
ZHOU Qin, XU Guiqiong
School of Management, Shanghai University, Shanghai 200444, China
全文: PDF(10694 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 开源社区关键开发者流失会造成剩余开发者心理和行为变化,引发系列级联效应。考虑跟随效应下关键开发者流失对剩余开发者工作强度和协作意愿的影响,设计负载容量变化的动态级联失效模型,并以开源设计平台AngularJS为例,探究开发者协作网络鲁棒性。研究发现:开源社区开发者协作网络抗干扰能力阈值存在最优区间;网络鲁棒性受初始负载分布的影响极大且在最高负载节点流失方式下最弱。研究结果为开源社区的管理运营提供了理论指导和支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周琴
徐桂琼
关键词 开源社区开发者协作网络动态级联失效鲁棒性    
Abstract:The loss of key developers in the open-source community will cause changes in the psychology and behavior of remaining developers, leading to a series of cascading effects. Considering the impact of the loss of key developers on the work intensity and collaboration willingness of remaining developers under the following effect, a dynamic cascade failure model with load capacity changes is designed. Taking the open-source design platform AngularJS as an example, the dynamic robustness of the open-source community developer collaboration network is investigated. The results show that the threshold of anti-interference ability of open-source community developer collaboration network has an optimal interval. The robustness of the developer collaboration network is greatly affected by the initial load distribution and is the weakest in the mode of the highest load node loss. The results are beneficial for the management and operation of open-source community.
Key wordsopen-source community    developer collaboration network    dynamic cascade failure    robustness
收稿日期: 2023-06-27      出版日期: 2025-04-27
ZTFLH:  G304  
  TP319.9  
基金资助:国家自然科学基金(11871328);上海市“科技创新”软科学重点项目(2106909800)
通讯作者: 徐桂琼(1973-),女,四川自贡人,博士,教授,主要研究方向为复杂系统建模、复杂网络、人工智能等。   
作者简介: 周 琴(1999-),女,四川南充人,硕士研究生,主要研究方向为复杂系统建模、开源技术与开源社区网络演化。
引用本文:   
周琴, 徐桂琼. 基于动态级联失效的开发者协作网络鲁棒性研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 33-42.
ZHOU Qin, XU Guiqiong. Research on the Robustness of Developer Collaboration Network Based on Dynamic Cascading Failure[J]. Complex Systems and Complexity Science, 2025, 22(1): 33-42.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.01.005      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I1/33
[1] 彭巍, 胡远航, 龚壮辉. 生态视角的复杂产品协同设计网络稳定性研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 88-94.
PENG W, HU Y H, GONG Z H. Stability of complex product collaborative design network from ecological perspective[J]. Complex Systems and Complexity Science, 2023, 20(1): 88-94.
[2] 焦豪, 杨季枫. 数字技术开源社区的治理机制: 基于悖论视角的双案例研究[J]. 管理世界, 2022, 28(11): 207-232.
JIAO H, YANG J F. The governance mechanism of digital technology-based open source community: a comparative case study from the paradox perspective[J]. Journal of Management World, 2022, 28(11): 207-232.
[3] 齐佳音, 张国锋, 王伟. 开源数字经济的创新逻辑: 大数据合作资产视角[J]. 北京交通大学学报 (社会科学版), 2021, 20(3): 37-49.
QI J Y, ZHANG G F, WANG W. Innovation logic of open source digital economy: the perspective of big data cooperation asset[J]. Journal of Beijing Jiaotong University(Social Sciences Edition), 2021, 20(3): 37-49.
[4] 李英姿, 张硕, 张晓冬. 面向开源设计演化过程的关键影响因素综述[J]. 科研管理, 2020, 41(8): 13-22.
LI Y Z, ZHANG S, ZHANG X D. A review of key impacting factors in the evolution process of open source design[J]. Science Research Management, 2020, 41(8): 13-22.
[5] KHAN B, MUFTI M R. Evolution of influential developer’s communities in oss and its impact on quality[J]. Intelligent Automation and Soft Computing, 2021, 28(2): 337-352.
[6] QI Q, CAO J. METHODS: A meta-path-based method for heterogeneous community detection in the open source software ecosystem[J]. Information and Software Technology, 2023, 162: 107271.
[7] 徐冰村, 张晓冬. 开源社区中的意见领袖识别及跟随效应仿真[J]. 情报理论与实践, 2019, 42(12): 101-107.
XU B C, ZHANG X D. Opinion leader identification and following effect simulation in the open source community[J]. Information Studies: Theory & Application, 2019, 42(12): 101-107.
[8] ZHAO Q, YAO X J, DANG X Y, et al. The nodes influence maximization in open source software community based on probability propagation model[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(4): 2386-2395.
[9] BARABASI A L. Network Science[M]. The United Kingdom: Cambridge University Press, 2016.
[10] OH W, JEON S. Membership herding and network stability in the open source community: the ising perspective[J]. Management Science, 2007, 53(7): 1086-1101.
[11] FUGE M, TEE K, AGOGINO A, et al. Analysis of collaborative design networks: a case study of OpenIDEO[J]. Journal of Computing and Information Science in Engineering, 2014, 14(2): 021009.
[12] GAMALIELSSON J, LUNDELL B. Sustainability of open source software communities beyond a fork: how and why has the LibreOffice project evolved?[J]. Journal of Systems and Software, 2014, 89: 128-145.
[13] ZHOU H L, ZHANG X D, HU Y. Robustness of open source product innovation community’s knowledge collaboration network under the dynamic environment[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 540: 122888.
[14] 卢冬冬, 吴洁, 刘鹏, 等. 开源软件核心开发者流失的级联效应仿真[J]. 复杂系统与复杂性科学, 2021, 18(2): 51-59.
LU D D, WU J, LIU P, et al. Simulation of the cascading effect by core developers turnover in open source software[J]. Complex Systems and Complexity Science, 2021, 18(2): 51-59.
[15] 魏龙, 党兴华. 基于组织-惯例的相依技术创新网络级联失效模型研究[J]. 管理评论, 2017, 29(11): 74-88.
WEI L, DANG X H. Research on cascading failure model of organization-routine interdependent technological innovation network[J]. Management Review, 2017, 29(11): 74-88.
[16] AN F, WU S, GAO X Y, et al. A quantification method of non-failure cascading spreading in a network of networks[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2021, 31(12): 123122.
[17] MOTTER A E, LAI Y C. Cascade-based attacks on complex networks[J]. Physical Review E, 2002, 66(6): 065102.
[18] YI C Q, BAO Y Y, JIANG J C, et al. Modeling cascading failures with the crisis of trust in social networks[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 436: 256-271.
[19] DUAN P S, ZHOU J L. Cascading vulnerability analysis of unsafe behaviors of construction workers from the perspective of network modeling[J]. Engineering, Construction and Architectural Management, 2021, 30(3): 1037-1060.
[20] WANG J W, WANG Z W, WANG S Y. Abnormal dynamics in cascading model with gravitational effect[J]. Nonlinear Dynamics, 2021, 105(1): 887-898.
[21] HAO Y C, WANG Y H, JIA L M, et al. Cascading failures in networks with the harmonic closeness under edge attack strategies[J]. Chaos, Solitons & Fractals, 2020, 135: 109772.
[22] WANG S L, LÜ W Z, ZHAO L F, et al. Structural and functional robustness of networked critical infrastructure systems under different failure scenarios[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 523: 476-487.
[23] WANG W B, SONG Y R, LI Y W, et al. Research on cascading failures model of power grid based on complex network[C]//Chinese Control and Decision Conference. Hefei, China: IEEE, 2020: 1367-1372.
[24] 夏昊翔, 张潇, 张醒洲. OpenStack开源软件开发者协作网络分析[J]. 系统工程理论与实践, 2017, 37(5): 1373-1382.
XIA H X, ZHANG X, ZHANG X Z. Study on collaborative network of OpenStack OSS developers[J]. Systems Engineering-Theory & Practice, 2017, 37(5): 1373-1382.
[25] CHRISTAKIS N A, FOWLER J H. Socialcontagion theory: examining dynamic social networks and human behavior [J]. Statistics in Medicine, 2013, 32(4): 550-577.
[1] 胡福年, 杨伟丹, 陈军. 基于关键节点的电力信息物理系统鲁棒性评估[J]. 复杂系统与复杂性科学, 2025, 22(1): 43-49.
[2] 张成军, 姚辉, 雷毅, 夏登辉, 李琪, 沈鑫禹, 钱铭, 余文斌. 高低阶耦合网络的鲁棒性研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 17-22.
[3] 周斌, 马福祥, 高淑洁, 马秀娟, 李明杰. 超边内部结构对无标度超网络鲁棒性的影响[J]. 复杂系统与复杂性科学, 2024, 21(3): 1-8.
[4] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[5] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[6] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[7] 林兆丰, 李树彬, 孔祥科. 地铁建设对公交系统鲁棒性的影响[J]. 复杂系统与复杂性科学, 2023, 20(1): 66-73.
[8] 卢炯, 许新建. 协同对社会传播的影响[J]. 复杂系统与复杂性科学, 2022, 19(3): 14-19.
[9] 谭桂敏, 汪丽娜, 臧臣瑞. 耦合二分网络识别通信系统流量的时空特征[J]. 复杂系统与复杂性科学, 2022, 19(2): 71-79.
[10] 王哲, 李建华, 康东, 冉淏丹. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26.
[11] 覃炳发, 李科赞. 桂林市公交换乘网络的实证分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 22-30.
[12] 刘鹏, 张鹏臣, 王念新. 开源软件社区开发者协作网络结构演化分析——以Cloud Foundry社区为例[J]. 复杂系统与复杂性科学, 2019, 16(4): 31-43.
[13] 李小林, 许润杰, 娄洁, 许新建. 双层网络上的社会传播[J]. 复杂系统与复杂性科学, 2019, 16(4): 13-18.
[14] 肖琴, 罗帆. 基于复杂网络的两栖水上飞机起降安全风险演化[J]. 复杂系统与复杂性科学, 2019, 16(2): 19-30.
[15] 宋甲秀, 杨晓翠, 张曦煌. 融合邻域鲁棒性及度均衡性的集体影响中心性[J]. 复杂系统与复杂性科学, 2019, 16(1): 26-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed