Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (1): 92-99    DOI: 10.13306/j.1672-3813.2024.01.012
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于深度强化学习的通勤走廊韧性恢复双层规划
李雪岩a, 张同宇b, 祝歆a
北京联合大学a. 管理学院,b. 城市轨道交通与物流学院,北京 100101
Bi-level Programming for Resilience Restoration of Commuting Corridor Based on Deep Reinforcement Learning
LI Xueyana, ZHANG Tongyub, ZHU Xina
a. School of Management; b. School of Urban Rail Transit and Logistics, Beijing Union University, Beijing 100101, China
全文: PDF(1923 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为实现通勤走廊内机动公交接驳方案的科学设计,将其韧性恢复过程视为复杂环境中接驳方案经过探索迭代实现韧性提升的双层规划。引入深度强化学习算法构建上层规划,采用价值函数神经网络拟合突发事件与出行者集群行为对接驳方案调整的反应函数,训练接驳方案达到决策目标。下层规划运用元胞神经网络模拟数据智能背景下的集群出行行为。实例研究表明,方法可以使通勤走廊韧性得到有效提升,而集群行为会对韧性恢复产生负面影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雪岩
张同宇
祝歆
关键词 通勤走廊韧性接驳方案深度强化学习集群行为    
Abstract:In order to realize the scientific design of motor bus transferring scheme in the commuter corridor, the resilience recovery process of commuting corridor is regarded as a bi-level programming in which the resilience is improved through continuous exploration and iteration of ground bus transferring scheme in complex environment. The deep reinforcement learning algorithm is introduced to form the upper level planning, and the value function neural network is used to fit the response function of emergencies and travelers' cluster behavior to the adjustment of ground bus transferring scheme. The decision-making objective is achieved by training the transferring schemes. In the lower level planning, the cellular neural network model is introduced to simulate the cluster travel choice behavior under the background of data intelligence. The case study shows that this method can effectively improve the resilience of the commuter corridor, and the cluster behavior will have a negative impact on the resilience recovery.
Key wordscommuting corridor    resilience    transferring scheme    deep reinforcement learning    cluster behavior
收稿日期: 2022-05-10      出版日期: 2024-04-26
ZTFLH:  U121  
  U491  
基金资助:北京市社会科学基金(21GLC046)
通讯作者: 祝歆(1977-),男,贵州贵阳人,博士,教授,主要研究方向为智慧城市关键技术。   
作者简介: 李雪岩(1987-),男,内蒙古呼和浩特人,博士,讲师,主要研究方向为复杂系统建模。
引用本文:   
李雪岩, 张同宇, 祝歆. 基于深度强化学习的通勤走廊韧性恢复双层规划[J]. 复杂系统与复杂性科学, 2024, 21(1): 92-99.
LI Xueyan, ZHANG Tongyu, ZHU Xin. Bi-level Programming for Resilience Restoration of Commuting Corridor Based on Deep Reinforcement Learning[J]. Complex Systems and Complexity Science, 2024, 21(1): 92-99.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.01.012      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I1/92
[1] MURRAY T, PAMELA. A Comparison of transportation network resilience under simulated system optimum and user equilibrium conditions[C]// Proceedings of the Winter Simulation Conference WSC 2006. California, USA: Monterey, 2006: 1398-1405.
[2] 张洁斐, 任刚,马景峰,等. 基于韧性评估的地铁网络修复时序决策方法[J].交通运输系统工程与信息,2020,20(4):14-20.
ZHANG J F, Ren G, MA J F, et al. Decision-making method of repair sequence for metro network based on resilience evaluation [J]. Journal of Transportation Systems Engineering and Information Technology, 2020,20(4):14-20.
[3] 谢永顺, 王成金, 韩增林, 等. 哈大城市带网络结构韧性演化研究[J]. 地理科学进展,2020,39(10):1619-1631.
XIE Y S, WANG C J, HAN Z L, et al. Structural resilience evolution of multiple urban networks in the Harbin-Dalian urban belt[J]. Progress in Geography, 2020, 39(10): 1619-1631.
[4] HUANG D, GU Y, WANG S, et al. A two-phase optimization model for the demand-responsive customized bus network design[J]. Transportation Research Part C Emerging Technologies, 2020, 111:1-21.
[5] 吕彪,管心怡,高自强.地铁网络服务韧性评估与最优恢复策略[J].交通运输系统工程与信息,2021,21(5):198-205,221.
LV B, GUAN X Y, GAO Z Q. Evaluation and optimal recovery strategy of metro network service resilience [J]. Journal of Transportation Systems Engineering and Information Technology, 2021,21(5):198-205,221.
[6] 周日彪,庞明宝,王雄杰.基于K-shell的特大城市公交换乘优惠与线网规划协同优化[J].公路交通科技,2021,38(6):141-148.
ZHOU R B, PANG M B, WANG X J. Coordination optimization of transfer pricing discount and network planning for public transport of megalopolis based on K-shell [J]. Journal of Highway and Transportation Research and Development, 2021,38(6):141-148.
[7] KROESEN M. CHORUS C. A new perspective on the role of attitudes in explaining travel behavior: a psychological network model [J]. Transportation Research Part A: Policy and Practice. 2020(133):82-94.
[8] 周城溪,肖玲玲. 考虑家庭成员的早高峰出行行为分析[J].系统工程理论与实践,2020,40(12):3220-3229.
ZHOU C X, XIAO L L. The analysis of travel behavior during morning rush hour considering household travels [J]. Systems Engineering-Theory & Practice, 2020,40(12):3220-3229.
[9] 袁韵, 徐戈, 陈晓红, 等. 城市交通拥堵与空气污染的交互影响机制研究-基于滴滴出行的大数据分析[J]. 管理科学学报,2020,23(2):54-73.
YUAN Y, XU G, CHEN X H, et al. Study on the interactive mechanism of urban traffic congestion and air pollution: a big data analysis based on Di Di Chuxing [J]. Journal of Management Science in China, 2020,23(2):54-73.
[10] ZHU Z, MARDAN A, ZHU S J, et al. Capturing the interaction between travel time reliability and route choice behavior based on the generalized Bayesian traffic model[J]. Transportation Research Part B: Methodological,2021(143): 48-64.
[11] WANG Y, WANG Y, CHOUDHURY C. Modelling heterogeneity in behavioral response to peak avoidance policy utilizing naturalistic data of Beijing subway travelers[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020,73:92-106.
[12] 蒋阳升,刘纹滔,姚志洪.基于元胞自动机的轨道交通突发客流拥堵消散演化机理研究[J].交通运输系统工程与信息,2020,20(5):121-127.
JIANG Y S, LIU W T, YAO Z H.Evolution mechanism of congestion and dissipation of sudden passenger flow in urban rail transit based on Cellular Automata [J]. Transportation Systems Engineering and Information Technology, 2020,20(5):121-127.
[13] KOH S, ZHOU B, FANG H, et al. Real time deep reinforcement learning based vehicle navigation[J]. Applied Soft Computing, 2020(96): 106694.
[14] 贾飞凡, 蒋熙, 李海鹰, 等. 基于强化学习的城轨信息发布策略研究[J]. 交通运输系统工程与信息, 2020, 20(5):72-78.
JIA FF, JIANG X, LI H Y, et al. Information release strategy of urban rail transit based on reinforcement learning [J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(5):72-78.
[15] 姚恩建,张茜,张锐.公共交通票价对通勤走廊出行结构的影响[J].交通运输工程学报,2017,17(6):104-114.
YAO E J, ZHANG Q, ZHANG R. Impact of public transport fare on travel mode structure of commuting corridor [J]. Journal of Traffic and Transportation Engineering, 2017,17(6):104-114.
[16] TVERSKY A, KAHNEMAN D. Advances in prospect theory: cumulative representation of uncertainty [J]. Journal of Risk and Uncertainty. 1992, 5(4): 297-323.
[17] PRELEC D. The probability weighting function [J]. Econometrica, 1998, 66(3): 497-527.
[18] LI X Y, LI X M, YANG L R, et al. Dynamic route and departure time choice model based on self-adaptive reference point and reinforcement learning[J].Physica A: Statistical Mechanics and Its Applications, 2018, 502: 77-92.
[1] 肖人彬, 张轩宇. 社会集群行为中观点极化研究进展——以偏见同化和敌意媒体效应为中心[J]. 复杂系统与复杂性科学, 2023, 20(4): 1-9.
[2] 刘玉洁, 吕文红, 高歌, 龚桂敏. 城市公交网络系统韧性修复方案设计[J]. 复杂系统与复杂性科学, 2023, 20(1): 57-65.
[3] 王淑良, 陈辰, 张建华, 栾声扬. 基于复杂网络的关联公共交通系统韧性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 47-54.
[4] 徐泽洲, 曲大义, 洪家乐, 宋晓晨. 智能网联汽车自动驾驶行为决策方法研究[J]. 复杂系统与复杂性科学, 2021, 18(3): 88-94.
[5] 刘晓露, 贾书伟. 用户—产品二部分网络中用户声誉实证研究[J]. 复杂系统与复杂性科学, 2020, 17(1): 37-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed