Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (1): 132-138    DOI: 10.13306/j.1672-3813.2024.01.017
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
探析Belousov-Zhabotinsky反应的复杂非线性特性
翟持
昆明理工大学化学工程学院,昆明 650500
On the Complex Nonlinearity of the Belousov-Zhabotinsky Reaction System
ZHAI Chi
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
全文: PDF(1827 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为探究自振荡凝胶的自组织特性,基于耗散结构理论探讨BZ(Belousov-Zhabotinsky)反应的周期性结构,并利用Andronov-Hopf分岔理论分析自振荡凝胶化学能守恒关系;基于反应-扩散不稳定性原理进行仿真模拟与分析,探讨化学图斑的形成机制。研究发现,驱动自振荡凝胶机械运动的BZ反应是典型的远离热力学平衡态系统,过高的化学势输入导致系统失稳,在涨落效应的激励下凝胶自发进行周期性的形变作用。BZ反应动力学特性的研究为探索和调控智能软材料提供理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟持
关键词 自振荡凝胶智能软材料周期性结构Andronov-Hopf分岔扩散不稳定    
Abstract:In order to study the property of self-oscillating gels, dissipative structure theory is applied to analyze the oscillating dynamics of the Belousov-Zhabotinsky (BZ) reaction, and Andronov-Hopf bifurcation is adopted for the BZ reaction model to study the occurrence and energy status and periodic change between chemical and mechanical potential; and its complex nonlinear characteristics are the key to the force-chemical coupling behavior of self-oscillating gels. From this study, we find that BZ reaction a typical system that is far from thermodynamic equilibrium, and the extra potential provided from the inputs might cause the system to destabilize, and with the onset of fluctuations, periodic deformation between swelling and deswelling takes place. The study of BZ rection dynamically could aid exploration on adjusting smart/ soft material that exhibits heartbeat-like behaviors
Key wordsself-oscillating gels    functional soft materials    periodic structure    Andronov-Hopf bifurcation    diffusion driven instability
收稿日期: 2022-01-05      出版日期: 2024-04-26
ZTFLH:  TB3  
基金资助:云南省基础研究计划基金(202001AU070048)
作者简介: 翟持(1989-),男,云南楚雄人,博士,副教授,主要研究方向为过程系统工程。
引用本文:   
翟持. 探析Belousov-Zhabotinsky反应的复杂非线性特性[J]. 复杂系统与复杂性科学, 2024, 21(1): 132-138.
ZHAI Chi. On the Complex Nonlinearity of the Belousov-Zhabotinsky Reaction System[J]. Complex Systems and Complexity Science, 2024, 21(1): 132-138.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.01.017      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I1/132
[1] 崔宇韬, 刘贺, 冀璇,等. 智能响应性水凝胶作为药物递送系统的研究与应用[J]. 中国组织工程研究, 2019, 23(34):8.
CUI Y T, LIU H, JI X, et al. Research and application of intelligent responsive hydrogel as drug delivery system [J]. China Organization Engineering Research, 2019, 23 (34): 8.
[2] 王鹏飞, 刘少宝, 周进雄,等. 自振荡凝胶的动力学模型及可控性分析[J]. 力学学报, 2013, 45(6):888-896.
WANG P F, LIU S B, ZHOU J X, et al. Dynamic model and controllability analysis of self oscillating gel [J]. Journal of Mechanics, 2013, 45(6): 888-896.
[3] 周宏伟, 丁小斌. Belousov-Zhabotinsky 反应驱动的智能高分子材料: 拓扑结构及仿生功能[J]. 化学进展, 2016, 28(1): 111-120.
ZHOU H W, DING X B. Intelligent polymer materials driven by belousov zhabotinsky reaction: topological structure and biomimetic function [J]. Chemical Progress, 2016, 28 (1): 111-120.
[4] LU X, REN L, GAO Q, et al. Photophobic and phototropic movement of a self-oscillating gel.[J] Chemical Communications, 2013, 49(70), 7690-7692.
[5] TAMATE R, UEKI T, SHIBAYAMA M, et al. Self-oscillating vesicles: spontaneous cyclic structural changes of synthetic diblock copolymers[J]. Angewandte Chemie International Edition, 2014, 53(42), 11248-11252.
[6] JARZYNSKI C. Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale[J]. Annu Rev Condens Matter Phys, 2011, 2(1): 329-351.
[7] MAX P. The man and his work[J]. Science, 1951, 113(2926): 75-81.
[8] MARTYUSHEV L M, SELEZNEV V D. Maximum entropy production principle in physics, chemistry and biology[J]. Physics Reports, 2006, 426(1): 1-45.
[9] PRIGOGINE I. Time, structure, and fluctuations[J]. Science, 1978, 201(4358): 777-785.
[10] TURING A M. The chemical basis of morphogenesis [J]. Philosophical Transactions of the Royal Society of London, 1952, 237(641): 37-72.
[11] PRIGOGINE I, NICOLIS G. On symmetry-breaking instabilities in dissipative systems[J]. The Journal of Chemical Physics, 1967, 46(9): 3542-3550.
[12] FERRELL J E. Bistability, bifurcations, and waddington's epigenetic landscape[J]. Current Biology, 2012, 22(11): R458-R466.
[13] LEI F, OLSSON L, JORGENSEN S B. Dynamic effects related to steady-state multiplicity in continuous saccharomyces cerevisiae cultivations[J]. Biotechnology and Bioengineering, 2004, 88(7): 838-848.
[14] GYORGYI L., FIELD R J. A three-variable model of deterministic chaos in the belousov-zhabotinsky reaction[J]. Nature, 1992, 355(6363): 808-810.
[15] ROSS J, ARKIN A P. Complex systems: from chemistry to systems biology[J]. Proceedings of the National Academy of Sciences, 2009, 106(16): 6433-6434.
[16] ANGELI D, FERRELL J E, SONTAG E D. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems [J]. PNAS,2004,101(7): 1822-1827.
[17] KITANO H. Systems biology: a brief overview [J]. Science, 2002,295(5560): 1662-1664.
[18] SUO L, REN J, ZHAO Z, et al. Study on the nonlinear dynamics of the continuous stirred tank reactors[J]. Processes, 2020, 8(11): 1436.
[19] PATKE A, YOUNG M W, AXELROD S. Molecular mechanisms and physiological importance of circadiam rhythms[J]. Nature Reviews Molecular Cell Biology, 2020, 21(2): 67-84.
[20] VAN LAAKE L W, LUSCHER T F, YOUNG M E. The circadian clock in cardiovascular regulation and disease: lessons from the nobel prize in physiology or medicine 2017[J]. European Heart Journal, 2018, 39(24): 2326-2329.
[21] FIELD R J, KOROS E, NOYES R M. Oscillations in chemical systems II [J]. Journal of the American Chemical Society, 1972, 94(25): 8649-8664.
[22] YOSHIDA R. Self-oscillating gels driven by the belousov-zhabotinsky reaction as novel smart materials[J]. Advanced Materials, 2010, 22(31): 3463-3483
[1] 纪鑫, 徐嘉明, 杨瑷玲, 于子兰, 唐铁桥. 突发传染病情况下高校行人流建模分析与管理控制:以高校食堂为例[J]. 复杂系统与复杂性科学, 2024, 21(1): 35-42.
[2] 国俊豪, 纪志坚. 基于NE结果的多智能体系统模型及其能控性[J]. 复杂系统与复杂性科学, 2021, 18(4): 50-57.
[3] 李睿, 王铮. 基于DQN的企业创业创新自主体模拟[J]. 复杂系统与复杂性科学, 2019, 16(1): 43-53.
[4] 李小珂, 赵紫娟, 郭强, 刘建国, 李仁德. 基于文本挖掘的网络科学会议主题研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 27-38.
[5] 刘飞, 王浩, 许小可. 社交媒体中表情符号的使用行为及成因分析[J]. 复杂系统与复杂性科学, 2020, 17(3): 70-77.
[6] 左子健, 张琳, 吴晔, 许小可. 基于社交网络信息的新冠疫情抽检策略研究[J]. 复杂系统与复杂性科学, 2023, 20(3): 20-26.
[7] 周建云, 刘真真, 许小可. 参照零模型的实证网络传播影响因素分析[J]. 复杂系统与复杂性科学, 2019, 16(3): 40-47.
[8] 李本先, 方锦清. 恐怖组织多层网络模型及其特性[J]. 复杂系统与复杂性科学, 2023, 20(4): 56-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed