Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (1): 58-65    DOI: 10.13306/j.1672-3813.2017.01.009
  本期目录 | 过刊浏览 | 高级检索 |
一种基于网络分析的语义冗余发现方法
王国栋, 高超, 原野, 张自力
西南大学 a.计算机与信息科学学院;b.智能软件与软件工程重点实验室,重庆 400715
Network-Based Analysis for Discovering Semantic Redundancy
WANG Guodong, GAO Chao, YUAN Ye, ZHANG Zili
a.School of Computer and Information Science; b.Key Laboratory of Intelligent Software and Software Engineering, Southwest University, Chongqing 400715, China
全文: PDF(1252 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 以农业AGROVOC本体为例,结合语义万维网推理机制定性分析冗余信息产生原因,利用复杂网络分析方法量化推理过程中产生的冗余,进而确定本体中的核心概念,解决推理冗余问题。实验表明,复杂网络分析方法可从定量角度找出核心节点及导致推理产生冗余的边,并揭示了语义冗余引起的推理效率降低问题。为优化本体设计、提高推理效率提供了一种新的可行方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王国栋
高超
原野
张自力
关键词 复杂网络推理冗余AGROVOC    
Abstract:The efficiency of semantic reasoning can be improved through constructing the semantic ontology reasonably and reducing the redundant information in the process of reasoning. It is a feasible method to reveal the reason of the redundant information in the process of reasoning through analyzing the dynamic changes of an ontology structure and the important role of nodes in an ontology. Taking AGROVOC ontology network as an example, this paper provides qualitative analyses based on the reasoning mechanism of semantic web for understanding the redundant information. Meanwhile, some quantitative measurements from the perspective of complex network are provided in order to identify the core concepts in a semantic web, and further to solve the problem of redundant information. Experimental results show that the reasoning of semantic web and the rationality of ontology construction can be quantitatively analyzed from the perspective of complex network, which provides a new measurement to optimize the design of ontology and improve the efficiency of reasoning in the semantic web.
Key wordscomplex networks    reasoning    redundancy    AGROVOC
收稿日期: 2015-06-04      出版日期: 2025-02-24
ZTFLH:  TP392  
基金资助:国家高技术研究发展计划项目(2013AA013801);国家自然科学基金(61402379,61403315);重庆市研究生科研创新项目(CYS14063)
作者简介: 王国栋(1990-),男,山东鱼台人,硕士研究生,主要研究方向为语义万维网。
引用本文:   
王国栋, 高超, 原野, 张自力. 一种基于网络分析的语义冗余发现方法[J]. 复杂系统与复杂性科学, 2017, 14(1): 58-65.
WANG Guodong, GAO Chao, YUAN Ye, ZHANG Zili. Network-Based Analysis for Discovering Semantic Redundancy[J]. Complex Systems and Complexity Science, 2017, 14(1): 58-65.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.01.009      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I1/58
[1] Meenachi N, Sai Baba M. Web ontology language editors for semantic web: a survey[J].International Journal of Computer Applications, 2012, 53(12): 12-16.
[2] Antoniou G, Van Harmelen F. A semantic web primer[M].Cambridge, Massachusetts, United States: MIT Press, 2004: 9-12.
[3] Berners-Lee T, Hendler J, Lassila O. The semantic web[J].Scientific American, 2001, 284(5): 28-37.
[4] Yuan Y, Zeng W, Zhang Z L. A semantic technology supported precision agriculture system: a case study for citrus fertilizing[C]//6th International Conference on Knowledge Science, Engineering and Management. Dalian, China: Springer Berlin Heidelberg, 2013: 104-111.
[5] The AGROVOC team. AGROVOC[OL].(2015-03-01)[2015-06-01].http://aims.fao.org/zh-hans/agrovoc.
[6] 王艺, 王英, 原野,等. 基于语义本体的柑橘肥水管理决策支持系统[J].农业工程学报, 2014, 30(9): 93-101.
Wang Yi, Wang Ying, Yuan Ye, et al. A decision support system for fertilization and irrigation management of citrus based on semantic ontology[J].Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(9): 93-101.
[7] Xu Y, Zou S, Gu A, et al. Research on the complex network of the UNSPSC ontology[J].Physics Procedia, 2012, 24: 1863-1867.
[8] eh I, Zorman M, repinek M, et al. Ontop: A Component for Acquiring Information from OWL Ontologies[J].Acta Electrotechnica et Informatica, 2012, 12(1): 30-37.
[9] Zhang H, Li Y F, Tan H B K. Measuring design complexity of semantic web ontologies[J].Journal of Systems and Software, 2010, 83(5): 803-814.
[10] Hsi I. Analyzing the conceptual coherence of computing applications through ontological excavation[D].Atlanta: Georgia Institute of Technology, 2004.
[11] Caracciolo C, Stellato A, Morshed A, et al. The agrovoc linked dataset[J].Semantic Web, 2013, 4(3): 341-348.
[12] Rajbhandari S, Keizer J. The AGROVOC concept scheme-a walkthrough[J].Journal of Integrative Agriculture, 2012, 11(5): 694-699.
[13] Manaf N A A, Bechhofer S, Stevens R. The current state of SKOS vocabularies on the web[C]//9th Extended Semantic Web Conference. Greece: Springer Berlin Heidelberg, 2012: 270-284.
[14] Myers T, Atkinson I. Eco-informatics modelling via semantic inference[J].Information Systems, 2013, 38(1): 16-32.
[15] 唐晋韬, 王挺, 王戟. 利用复杂网络分析方法研究基因本体隐藏结构信息[J].东南大学学报:英文版, 2010, 1: 31-35.
Tang JinTao, Wang Ting, Wang Ji. Discovering hidden information of gene ontology based on complex networks analysis[J].Journal of Southeast University, 2010, 26(1): 31-35.
[16] 张自力,李莉.语义万维网——工程实践指南[M].第2版.北京:高等教育出版社,2015:184-185.
[17] 张大陆, 王志晓, 刘雯,等. 基于复杂网络的本体结构分析[J].同济大学学报: 自然科学版, 2009, 2: 258-261.
Zhang Da, Wang Zhixiao, Liu Wen, et al. Complex network-based ontology structure analysis[J].Journal of Tongji University (Natural Science), 2009, 2: 258-261.
[18] Costa L F, Oliveira Jr O N, Travieso G, et al. Analyzing and modeling real-world phenomena with complex networks: a survey of applications[J].Advances in Physics, 2011, 60(3): 329-412.
[19] Maoz Z. Preferential attachment, homophily, and the structure of international networks, 1816-2003[J].Conflict Management and Peace Science, 2012, 29(3): 341-369.
[20] Zhou L, Lu F, Zhang H. Evaluating road selectivity of urban-trip based on dynamic betweenness centrality[C]//The 20th International Conference on Geoinformatics (GEOINFORMATICS). Hong Kong: IEEE, 2012: 1-5.
[21] Gulati R, Sytch M, Tatarynowicz A. The rise and fall of small worlds: Exploring the dynamics of social structure[J].Organization Science, 2012, 23(2): 449-471.
[22] 周漩, 张凤鸣, 李克武,等. 利用重要度评价矩阵确定复杂网络关键节点[J].物理学报, 2012, 61(5): 050201.
Zhou Xuan, Zhang Fengming, Li Kewu, et al. Use importance evaluation matrix to determine the complex network nodes[J].Journal of Physics, 2012, 61(5): 050201.
[23] 任晓龙,吕琳媛. 网络重要节点排序方法综述[J].科学通报, 2014, 13: 1175-1197.
Ren Xiaolong, Lv Linyuan. Review of ranking nodes in complex networks[J].Chinese Science Bulletin, 2014, 13: 1175-1197.
[24] Zhang X, Cheng G, Ge W Y, et al. Summarizing vocabularies in the global semantic web[J].Journal of Computer Science and Technology, 2009, 24(1): 165-174.
[1] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[2] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[3] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[4] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[5] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[6] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[7] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[8] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[9] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[10] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[11] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[12] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[13] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[14] 杨文东, 黄依宁, 张生润. 基于多层复杂网络的RCEP国际航线网络特征分析[J]. 复杂系统与复杂性科学, 2023, 20(3): 60-67.
[15] 任翠萍, 杨明翔, 张裕铭, 谢逢洁. 快递安全事故致因网络构建及结构特性分析[J]. 复杂系统与复杂性科学, 2023, 20(2): 74-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed