1.School of Systems Science, Beijing Normal University, Beijing 100875; 2.School of Physics and Optical Information Science, Jiaying University, Meizhou 514015
Abstract:From bacteria to vertebrate, collective motion in living groups in space has gradually become a research hot point. This paper reviews recent studies on collective motion according to the logic from phenomenology to dynamic mechanics. For the phenomenology study, we focus on “order parameter”, “collective symmetry breaking”, “group size distribution” and “spatial correlation” most of which are based on quantitative observations and experiments. Some of these rules are universal in the sense that they can be observed in various species. The “attraction and repulsion”, “alignment rule”, “interaction range”, “heterogeneity” and “linear superposition of interactions”, especially the inferred rules based on the traced tracks of various individual movements, are closely investigated in dynamics part of this paper. This review pays much attention to distinguishing observations and the experiment results from assumptions. Under this logic frame, not only the plentiful and substantial results in collective motion are reviewed, but also an explicit and clear picture is depicted on how many miles we have covered on pursuing the universal laws in collective motion and on what the most important problems are ahead of us.
李耕, 狄增如, 韩战钢. 集群运动:唯像描述与动力学机制[J]. 复杂系统与复杂性科学, 2016, 13(2): 1-13.
LI Geng, DI Zengru, HAN Zhangang. Collective Motion: Phenomenology and Dynamics[J]. Complex Systems and Complexity Science, 2016, 13(2): 1-13.
[1] Evans H E. The Comparative Ethology and Evolution of the Sand Wasps[M].Cambridge: Harvard University Press, 1966: 526. [2] Hölldobler B, Wilson E O. The ants[M].Cambridge: Harvard University Press, 1990. [3] Uvarov B P. Behaviour, Ecology, Biogeography, Population Dynamics[M].Grasshopper and Locust: a Handbook of General Acridology, Cambridge University Press, 1977. [4] Parr A E. A contribution to the theoretical analysis of the schooling behavior of fishes[J].Occasional Papers Bingham Oceanography Collection, 1927, 1: 1-32. [5] Breder C M J. Studies on social grouping in fishes[J].Bulletin of the American Museum of Natural History. 1959, 117: 399-481. [6] Wilson E O. Sociobiology: the New Synthesis[M].北京: 北京理工大学出版社, 2008. [7] Nakamura E L. Behavior of Marine Ainimals: Current Perspectives in Research[M].New York: Plenum Press, 1972. [8] Neuweiler G. Verhaltensbeobachtungen an einer indischen Flughundkolonie (Pteropus g. giganteus Brünn)[J].Zeitschrift fur Tierpsychologie, 1969, 26: 166-199. [9] Mohr H. Zum Erkennen von Raubvogeln, insbesondere von Sperber und Baumfalk, durch Kleinvogeln[J].Zeitschrift fur Tierpsychologie, 1960, 17: 686-699. [10] Murton R K. The Problems of Birds as Pests[M].New York: Academic Press, 1968: 157-169. [11] Goss-Custard J D. Feeding dispersion in some overwintering wading birds[M] ∥Crook J H. Social Behavior in Birds and Mammals: Essays on the Social Ethology of Animals and Man: London. New York:Academic Press, 1970, 3-35. [12] Davis R B, Herreid C F, Short H L. Mexican free-tailed bats in Texas[J].Ecological Monographs, 1962, 32: 311-346. [13] Ioannou C C, Guttal V, Couzin I D. Predatory fish select for coordinated collective motion in virtual prey[J].Science, 2012, 337(6099): 1212-1215. [14] Yang S C, Jiang S J, Jiang L, et al. Aggregation increases prey survival time in group chase and escape[J].New Journal of Physics, 2014, 16: 83006. [15] Brock V E, Riffenburgh R H. Fish schooling: a possible factor in reducing predation[J].Journal du Conseil, Conseil Permanent International pour l' Exploration de la Mer, 1960, 25: 307-317. [16] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile sutonomous sgents using nearest neighbor rules[J].Automatic Control, 2003, 48: 988-1001. [17] Liu Z X, Guo L. Synchronization of multi-agent systems without connectivity assumptions[J].Automatica, 2009, 45: 2744-2754. [18] Vicsek T, Zafeiris A. Collective motion[J].Physics Reports, 2012, 517(3-4): 71-140. [19] Vicsek T, Czirók A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles[J].Physical Review Letters, 1995, 75: 1226. [20] Couzin I D, Krause J, James R, et al. Collective memory and spatial sorting in animal groups[J].Journal of Theoretical Biology, 2002, 218: 1-11. [21] Katz Y, Tunstrom K, Ioannou C C, et al. Inferring the structure and dynamics of interactions in schooling fish[J].Proceedings of the National Academy of Sciences, 2011, 108(46): 18720-18725. [22] Herbert-Read J E, Perna A, Mann R P, et al. Inferring the rules of interaction of shoaling fish[J].Proceedings of the National Academy of Sciences, 2011, 108(46): 18726-18731. [23] 唯像理论[EB/OL].[2014-05-22].http://zh.wikipedia.org/wiki/%E5%94%AF%E8%B1%A1%E7%90%86%E8%AE%BA. [24] Szabo B, Szolosi G J, Gonci B, et al. Phase transition in the collective migration of tissue cells: experiment and model[J].Physical Review E, 2006, 74: 61908. [25] Buhl J, Sumpter D J T, Couzin I D, et al. From disorder to order in marching locusts[J].Science, 2006, 312(5778): 1402-1406. [26] Cavagna A, Cimarelli A, Giardina I, et al. Scale-free correlations in starling flocks[J].Proceedings of the National Academy of Sciences, 2010, 107(26): 11865-11870. [27] Altshuler E, Ramos O, Nunez Y, et al. Symmetry breaking in escaping ants[J].The American Naturalist, 166: 643-649. [28] Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic[J].Nature, 2000, 407: 487-490. [29] Li G, Huan D, Reohner B, et al. Symmetry breaking on density in escaping ants: experiment and alarm pheromone model[J].Plos One, 2014, 9(12):e114517. [30] Bonabeau E, Dagorn L, Freon P. Scaling in animal group-size distributions[J].Proceedings of the National Academy of Sciences, 1999, 96: 4472-4477. [31] Bonabeau E, Dagorn L. Possible universality in the size distribution of fish schools[J].Physical Review E, 5220: 51-54. [32] Zhang H P, Be'Er A, Florin E L, et al. Collective motion and density fluctuations in bacterial colonies[J].Proceedings of the National Academy of Sciences, 2010, 107(31): 13626-13630. [33] Chen X, Dong X, Be'Er A, et al. Scale-invariant correlations in dynamic bacterial clusters[J].Physical Review Letters, 2012, 108(14):148101. [34] Couzin I D, Krause J. Self-organization and collective behavior in vertebrates[J].Advances In the Study Of Behavior, 2003, 32: 1-75. [35] Dell A I, Bender J A, Branson K, et al. Automated image-based tracking and its application in ecology[J].Trends in Ecology & Evolution, 2014, 29(7): 417-428. [36] Reynolds C W. Flocks, herds and schools: a distributed behavioral model[J].Acm Siggraph Computer Graphics, 2015, 21(4):25-34. [37] Strömbom D. Collective motion from local attraction[J].Journal of Theoretical Biology, 2011, 283(1): 145-151. [38] Ballerini M, Cabibbo N, Candelier R, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study[J].Proceedings of the National Academy of Sciences, 2007, 105: 1232-1237. [39] Romanczuk P, Schimansky-Geier L. Swarming and pattern formation due to selective attraction and repulsion[J].Interface Focus, 2012, 2: 746-756. [40] Lemasson B H, Anderson J J, Goodwin R A. Motion-guided attention promotes adaptive communications[J].Proceedings of the Royal Society B, .2012, 280: 20122003. [41] Nagy M, ákos Z, Biro D, et al. Hierarchical group dynamics in pigeon flocks[J].Nature, 2010, 464(7290): 890-893. [42] Freeman R, Mann R, Guilford T, et al. Group decisions and individual differences: route fidelity predicts flight leadership in homing pigeons (Columba livia)[J].biology letters, 2011, 7: 63-66. [43] Couzin I D, Krause J, Franks N R, et al. Effective leadership and decision-making in animal groups on the move[J].Nature, 433: 513-516. [44] Weitz S, Blanco S, Fournier R, et al. Modeling collective animal behavior with a cognitive perspective: a methodological framework[J].Plos ONE, 2012, 7: e38588. [45] Theraulaz G, Bonabeau E, Nicolis S C, et al. Spatial patterns in ant coloniespdf[J].Proceedings of the National Academy of Sciences, 2002, 99: 9645-9649. [46] Di Z, Gho M, Lu M, et al. How can one measure group cohesion? From individual organisms to their interaction[DB/OL].http://arxiv.org/abs/1406.3595.