Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (2): 1-13    DOI: 10.13306/j.1672-3813.2016.02.001
  本期目录 | 过刊浏览 | 高级检索 |
集群运动:唯像描述与动力学机制
李耕1,2, 狄增如1, 韩战钢1
1.北京师范大学系统科学科学院,北京 100875;
2.嘉应学院物理与光信息科技学院,广东 梅州 514015
Collective Motion: Phenomenology and Dynamics
LI Geng1,2, DI Zengru1, HAN Zhangang1
1.School of Systems Science, Beijing Normal University, Beijing 100875;
2.School of Physics and Optical Information Science, Jiaying University, Meizhou 514015
全文: PDF(3102 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 鉴于生物群体在空间中展现出的大规模集群运动已经成为集群行为研究的一大热点,从集群运动的唯像描述到动力学机制的逻辑线索展开综述。唯像描述部分中主要介绍“一致性序参量”、“集群对称破缺”、“集群规模分布”和“空间关联”等集群运动的唯像特征。它们大都具有定量的实证基础,有些还体现出一定的定量普适性(适用于多物种)。在动力学机制部分分别介绍“吸引与排斥”、“对齐规则”、“相互作用范围”、“个体异质性”和“相互作用的线性叠加”等微观规则,重点总结了基于轨迹追踪的机制推断成果。还特别着重区分实证与假设。通过这样的逻辑梳理,既描绘出“集群运动”这一新兴领域在不长的时间里积累的丰硕成果,又清晰地系统展现出我们在追求集群运动普适律的道路上已经走了多远,以及摆在面前的重要问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李耕
狄增如
韩战钢
关键词 集群运动唯像理论动力学机制    
Abstract:From bacteria to vertebrate, collective motion in living groups in space has gradually become a research hot point. This paper reviews recent studies on collective motion according to the logic from phenomenology to dynamic mechanics. For the phenomenology study, we focus on “order parameter”, “collective symmetry breaking”, “group size distribution” and “spatial correlation” most of which are based on quantitative observations and experiments. Some of these rules are universal in the sense that they can be observed in various species. The “attraction and repulsion”, “alignment rule”, “interaction range”, “heterogeneity” and “linear superposition of interactions”, especially the inferred rules based on the traced tracks of various individual movements, are closely investigated in dynamics part of this paper. This review pays much attention to distinguishing observations and the experiment results from assumptions. Under this logic frame, not only the plentiful and substantial results in collective motion are reviewed, but also an explicit and clear picture is depicted on how many miles we have covered on pursuing the universal laws in collective motion and on what the most important problems are ahead of us.
Key wordscollective motion    phenomenology    dynamics
收稿日期: 2014-12-09      出版日期: 2025-02-25
ZTFLH:  N945  
基金资助:国家自然科学基金(61074116,61374165)
作者简介: 李耕(1985-),男,湖北丹江口人,博士研究生,讲师,主要研究方向为复杂系统中的群体行为。
引用本文:   
李耕, 狄增如, 韩战钢. 集群运动:唯像描述与动力学机制[J]. 复杂系统与复杂性科学, 2016, 13(2): 1-13.
LI Geng, DI Zengru, HAN Zhangang. Collective Motion: Phenomenology and Dynamics[J]. Complex Systems and Complexity Science, 2016, 13(2): 1-13.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.02.001      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I2/1
[1] Evans H E. The Comparative Ethology and Evolution of the Sand Wasps[M].Cambridge: Harvard University Press, 1966: 526.
[2] Hölldobler B, Wilson E O. The ants[M].Cambridge: Harvard University Press, 1990.
[3] Uvarov B P. Behaviour, Ecology, Biogeography, Population Dynamics[M].Grasshopper and Locust: a Handbook of General Acridology, Cambridge University Press, 1977.
[4] Parr A E. A contribution to the theoretical analysis of the schooling behavior of fishes[J].Occasional Papers Bingham Oceanography Collection, 1927, 1: 1-32.
[5] Breder C M J. Studies on social grouping in fishes[J].Bulletin of the American Museum of Natural History. 1959, 117: 399-481.
[6] Wilson E O. Sociobiology: the New Synthesis[M].北京: 北京理工大学出版社, 2008.
[7] Nakamura E L. Behavior of Marine Ainimals: Current Perspectives in Research[M].New York: Plenum Press, 1972.
[8] Neuweiler G. Verhaltensbeobachtungen an einer indischen Flughundkolonie (Pteropus g. giganteus Brünn)[J].Zeitschrift fur Tierpsychologie, 1969, 26: 166-199.
[9] Mohr H. Zum Erkennen von Raubvogeln, insbesondere von Sperber und Baumfalk, durch Kleinvogeln[J].Zeitschrift fur Tierpsychologie, 1960, 17: 686-699.
[10] Murton R K. The Problems of Birds as Pests[M].New York: Academic Press, 1968: 157-169.
[11] Goss-Custard J D. Feeding dispersion in some overwintering wading birds[M] ∥Crook J H. Social Behavior in Birds and Mammals: Essays on the Social Ethology of Animals and Man: London. New York:Academic Press, 1970, 3-35.
[12] Davis R B, Herreid C F, Short H L. Mexican free-tailed bats in Texas[J].Ecological Monographs, 1962, 32: 311-346.
[13] Ioannou C C, Guttal V, Couzin I D. Predatory fish select for coordinated collective motion in virtual prey[J].Science, 2012, 337(6099): 1212-1215.
[14] Yang S C, Jiang S J, Jiang L, et al. Aggregation increases prey survival time in group chase and escape[J].New Journal of Physics, 2014, 16: 83006.
[15] Brock V E, Riffenburgh R H. Fish schooling: a possible factor in reducing predation[J].Journal du Conseil, Conseil Permanent International pour l' Exploration de la Mer, 1960, 25: 307-317.
[16] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile sutonomous sgents using nearest neighbor rules[J].Automatic Control, 2003, 48: 988-1001.
[17] Liu Z X, Guo L. Synchronization of multi-agent systems without connectivity assumptions[J].Automatica, 2009, 45: 2744-2754.
[18] Vicsek T, Zafeiris A. Collective motion[J].Physics Reports, 2012, 517(3-4): 71-140.
[19] Vicsek T, Czirók A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles[J].Physical Review Letters, 1995, 75: 1226.
[20] Couzin I D, Krause J, James R, et al. Collective memory and spatial sorting in animal groups[J].Journal of Theoretical Biology, 2002, 218: 1-11.
[21] Katz Y, Tunstrom K, Ioannou C C, et al. Inferring the structure and dynamics of interactions in schooling fish[J].Proceedings of the National Academy of Sciences, 2011, 108(46): 18720-18725.
[22] Herbert-Read J E, Perna A, Mann R P, et al. Inferring the rules of interaction of shoaling fish[J].Proceedings of the National Academy of Sciences, 2011, 108(46): 18726-18731.
[23] 唯像理论[EB/OL].[2014-05-22].http://zh.wikipedia.org/wiki/%E5%94%AF%E8%B1%A1%E7%90%86%E8%AE%BA.
[24] Szabo B, Szolosi G J, Gonci B, et al. Phase transition in the collective migration of tissue cells: experiment and model[J].Physical Review E, 2006, 74: 61908.
[25] Buhl J, Sumpter D J T, Couzin I D, et al. From disorder to order in marching locusts[J].Science, 2006, 312(5778): 1402-1406.
[26] Cavagna A, Cimarelli A, Giardina I, et al. Scale-free correlations in starling flocks[J].Proceedings of the National Academy of Sciences, 2010, 107(26): 11865-11870.
[27] Altshuler E, Ramos O, Nunez Y, et al. Symmetry breaking in escaping ants[J].The American Naturalist, 166: 643-649.
[28] Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic[J].Nature, 2000, 407: 487-490.
[29] Li G, Huan D, Reohner B, et al. Symmetry breaking on density in escaping ants: experiment and alarm pheromone model[J].Plos One, 2014, 9(12):e114517.
[30] Bonabeau E, Dagorn L, Freon P. Scaling in animal group-size distributions[J].Proceedings of the National Academy of Sciences, 1999, 96: 4472-4477.
[31] Bonabeau E, Dagorn L. Possible universality in the size distribution of fish schools[J].Physical Review E, 5220: 51-54.
[32] Zhang H P, Be'Er A, Florin E L, et al. Collective motion and density fluctuations in bacterial colonies[J].Proceedings of the National Academy of Sciences, 2010, 107(31): 13626-13630.
[33] Chen X, Dong X, Be'Er A, et al. Scale-invariant correlations in dynamic bacterial clusters[J].Physical Review Letters, 2012, 108(14):148101.
[34] Couzin I D, Krause J. Self-organization and collective behavior in vertebrates[J].Advances In the Study Of Behavior, 2003, 32: 1-75.
[35] Dell A I, Bender J A, Branson K, et al. Automated image-based tracking and its application in ecology[J].Trends in Ecology & Evolution, 2014, 29(7): 417-428.
[36] Reynolds C W. Flocks, herds and schools: a distributed behavioral model[J].Acm Siggraph Computer Graphics, 2015, 21(4):25-34.
[37] Strömbom D. Collective motion from local attraction[J].Journal of Theoretical Biology, 2011, 283(1): 145-151.
[38] Ballerini M, Cabibbo N, Candelier R, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study[J].Proceedings of the National Academy of Sciences, 2007, 105: 1232-1237.
[39] Romanczuk P, Schimansky-Geier L. Swarming and pattern formation due to selective attraction and repulsion[J].Interface Focus, 2012, 2: 746-756.
[40] Lemasson B H, Anderson J J, Goodwin R A. Motion-guided attention promotes adaptive communications[J].Proceedings of the Royal Society B, .2012, 280: 20122003.
[41] Nagy M, ákos Z, Biro D, et al. Hierarchical group dynamics in pigeon flocks[J].Nature, 2010, 464(7290): 890-893.
[42] Freeman R, Mann R, Guilford T, et al. Group decisions and individual differences: route fidelity predicts flight leadership in homing pigeons (Columba livia)[J].biology letters, 2011, 7: 63-66.
[43] Couzin I D, Krause J, Franks N R, et al. Effective leadership and decision-making in animal groups on the move[J].Nature, 433: 513-516.
[44] Weitz S, Blanco S, Fournier R, et al. Modeling collective animal behavior with a cognitive perspective: a methodological framework[J].Plos ONE, 2012, 7: e38588.
[45] Theraulaz G, Bonabeau E, Nicolis S C, et al. Spatial patterns in ant coloniespdf[J].Proceedings of the National Academy of Sciences, 2002, 99: 9645-9649.
[46] Di Z, Gho M, Lu M, et al. How can one measure group cohesion? From individual organisms to their interaction[DB/OL].http://arxiv.org/abs/1406.3595.
[1] 周斌, 马福祥, 高淑洁, 马秀娟, 李明杰. 超边内部结构对无标度超网络鲁棒性的影响[J]. 复杂系统与复杂性科学, 2024, 21(3): 1-8.
[2] 廖阳, 孟豪南, 李迎峰, 李思卿. 需求变动视角下虚拟养老服务人员调度研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 144-153.
[3] 李军涛, 胡启贤, 刘朋飞, 郭文文. 跨层穿梭车双提升机系统多目标问题优化[J]. 复杂系统与复杂性科学, 2022, 19(4): 80-90.
[4] 王姗姗, 张纪会. “货到人”拣选系统订单分批优化[J]. 复杂系统与复杂性科学, 2022, 19(3): 74-80.
[5] 王姗姗, 张纪会. 穿梭车仓储系统复合作业路径优化[J]. 复杂系统与复杂性科学, 2021, 18(1): 63-72.
[6] 冯倩倩, 周伟刚, 陈仕军. 动态围堵嫌犯模型[J]. 复杂系统与复杂性科学, 2021, 18(1): 48-52.
[7] 田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.
[8] 李阳, 田兴华, 张纪会. 基于改进BA网络的遗传算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 69-76.
[9] 朱萌萌, 宋运忠. 基于勒贝格采样的非线性系统优化控制[J]. 复杂系统与复杂性科学, 2019, 16(1): 83-93.
[10] 潘园园, 张力, 段玲玲, 段法兵. 离散Hopfield神经网络的手写数字识别研究[J]. 复杂系统与复杂性科学, 2018, 15(1): 75-79.
[11] 封学军, 张铖, 蒋柳鹏, 张艳, 蒋鹤. “海上丝绸之路”集装箱航运网络路由策略研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 58-65.
[12] 李靖宇, 姜立, 沈超, 于忱, 韩战钢. 拥挤系统阻碍物设置的真人行为实验研究[J]. 复杂系统与复杂性科学, 2016, 13(2): 22-26.
[13] 李雪岩, 李雪梅, 李学伟, 赵云, 邱荷婷. 基于动态参照点的多主体有限理性路径选择模型[J]. 复杂系统与复杂性科学, 2016, 13(2): 27-35.
[14] 王光波, 孙仁诚, 隋毅, 邵峰晶. 卷积神经网络复杂性质与准确率的关系研究[J]. 复杂系统与复杂性科学, 2021, 18(2): 60-65.
[15] 方鸿雁, 潘园园, 孙华通, 张立, 段法兵. 耦合神经网络中脉冲信号传输的噪声增强研究[J]. 复杂系统与复杂性科学, 2017, 14(2): 59-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed