Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (2): 27-35    DOI: 10.13306/j.1672-3813.2016.02.004
  本期目录 | 过刊浏览 | 高级检索 |
基于动态参照点的多主体有限理性路径选择模型
李雪岩, 李雪梅, 李学伟, 赵云, 邱荷婷
北京交通大学经济管理学院 北京 100044
Dynamic Reference Points based Bounded Rational Multi-Agent Model of Route Choice
LI Xueyan, LI Xuemei, LI Xuewei, ZHAO yun, QIU Heting
School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China
全文: PDF(1254 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了研究有限理性假设下出行者的自适应调整行为对交通网络分流的影响,利用累积前景理论结合演化元胞自动机建立了具有个体交互机制的多主体路径选择模型。在模型中将出行者划分为风险追求者与风险厌恶者,基于出行时间可靠性并借鉴元胞遗传算法的思想设计了具有异质特点的出行者动态参照点及其演化规则,使出行者个体能够依据决策环境的变化动态地调整自身的出行时间预算,更加符合出行者的实际行为特征。最后将多主体参照点演化规则与传统的相继平均算法相结合,求解路网配流。研究发现:演化模型较好地继承了传统模型中的路径分流特点;不同的出行者类型比例及出行者的信息接收程度是影响路网分流结构的重要因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雪岩
李雪梅
李学伟
赵云
邱荷婷
关键词 有限理性多主体风险元胞遗传算法动态参照点交通流量分配    
Abstract:For the research of the impacts of travellers’ adaptive behavior on traffic flow assignment under bounded rationality, the multi-agent model of route choice with interaction among travellers is established using cumulative prospect theory and cellular automaton, in which travellers are grouped into two types: risk lovers and risk averse. Travellers’ heterogeneous dynamic reference points and evolution rules are designed based on travel time reliability and the idea of cellular genetic algorithm, so travellers can dynamically adjust their budget of travel time according to environment. The new model is more in tune with travellers’ actual behavior. Then by combining multi-passengers’ evolution rule with method of successive average, the new traffic flow assignment is solved. The study found that (1) the new model inherited the characteristics of the traditional traffic flow assignment model; (2) proportions of travellers with different risk attitude and travellers’ information receiving degree are critical factors which affecting traffic flow assignment.
Key wordsbounded rationality    multi-agent    risk    cellular genetic algorithm    dynamic reference points    traffic flow assignment
收稿日期: 2014-05-23      出版日期: 2025-02-25
ZTFLH:  N945  
基金资助:国家自然科学基金(71273023);高等学校博士学科点专项科研基金:(20130009110020);中央高校基本科研业务费专项资金(2013YJS039;2014YJS059)
作者简介: 李雪岩(1987-),男,内蒙古呼和浩特人,博士研究生,主要研究方向为管理科学及复杂系统决策理论。
引用本文:   
李雪岩, 李雪梅, 李学伟, 赵云, 邱荷婷. 基于动态参照点的多主体有限理性路径选择模型[J]. 复杂系统与复杂性科学, 2016, 13(2): 27-35.
LI Xueyan, LI Xuemei, LI Xuewei, ZHAO Yun, QIU Heting. Dynamic Reference Points based Bounded Rational Multi-Agent Model of Route Choice[J]. Complex Systems and Complexity Science, 2016, 13(2): 27-35.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.02.004      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I2/27
[1] Simon H A.Behavioral model of rational choice[J].Quarterly Journal of Economics,1955,69:99-120.
[2] Ellsberg D.Risk,Ambiguity and the savage axioms[J].Quarterly Journal of Economics,1961,75(4):643-669.
[3] Avineri E,Prashker J N.Sensitivity to travel time variability:travelers learning perspective[J].Transportation Research Part C,2005,13(2):157-183.
[4] Kahneman D,Tversky A.Prospect theory:an analysis of decision under risk[J].Econometrica,1979,47(2):263-291.
[5] Tversky A,Kahneman D.Advances in prospect theory:Cumulative representation of uncertainty[J].Risk Uncertainty,1992,5(4):297-323.
[6] Jou R C,Chen K H.An application of cumulative prospect theory to freeway drivers'route choice behaviours[J].Transportation Research Part A,2013,49(3):123-131.
[7] Xu H L,Zhou J, Xu W.A decision-making rule for modeling travelers'route choice behavior based on cumulative prospect theory[J].Transportation Research Part C,2011,19(2):218-228.
[8] Xu H L,Zhou J,Xu W.A prospect-based user equilibrium model with endogenous reference points and its application in congestion pricing[J].Transportation Research Part B,2011,45(2): 3111-328.
[9] Paolo De S,Francesco F.Stochastic user equilibrium with reference-dependent route choice and endogenous reference points[J].Procedia-Social and Behavioral Sciences,2012,54(10):547-556.
[10] 王伟,孙会君.基于内生参考点的交通网络均衡模型[J].应用数学和力学,2013,34(2):190-198.
Wang Wei,Sun Huijun.Traffic network equilibrium model based on endogenous reference point[J].Applied Mathematics and Mechanics,2013,34(2):190-198.
[11] Giselle de M R,Winnie D,Serge H.Modelling travellers'heterogeneous route choice behaviour as prospect maximizers[J].The Journal of Choice Modelling,2013,6(3):17-33.
[12] 张波,隽志才,林徐勋.基于累积前景理论的出发时间选择SDUO模型[J].管理工程学报,2013,27(1):68-76.
Zhang Bo,Juan Zhicai,Lin Xuxun.Stochastic dynamic user optimum model with departure time choice based on cumulative prospect theory[J].Journal of Industrial Engineering/Engineering Management,2013,27(1):68-76.
[13] Caspar G C,Harry J P. Measuring user benefits of changes in the transport system when traveler awareness is limited[J].Transportation Research Part A,2009,43(6):536-547.
[14] Ann van A,Erik R L.Self-organising behaviour in the presence of negative externalities:a conceptual model of commuter choice[J].European Journal of Operational Research,2004,157:501-513.
[15] 度巍,黄崇超,肖海燕,等.信息系统下弹性需求随机用户均衡演化模型[J].交通运输系统工程与信息,2013,13(6):120-126.
Du Wei,Huang Chongchao,Xiao Haiyan,et al.Stochastic user equilibrium evolutionary model with elastic demand and advanced traveler information systems[J].Journal of Transportation Systems Engineering and Information Technology,2013,13(6):120-126.
[16] John H M, Scott E P. Complex Adaptive Systems: an Introduction to Computational Models of Social Life[M].Princeton, New Jersey: Princeton University Press, 2007.
[17] 寇勇刚,吴桐水,朱金福.航空服务创新的元胞自动机竞争演化模拟[J].系统工程理论与实践,2011, 31(6):1071-1076.
Kou Yonggang,Wu Tongshui,Zhu Jinfu.Simulating of evolution for the aviation service innovation competition with cellular automata[J].Systems Engineering Theory & Practice,2011, 31(6):1071-1076.
[18] Lo H K,Luo X W,Siu B W Y.Degradable transport network:travel time budget of travelers with heterogeneous risk aversion[J].Transportation Research Part B,2006,40(9):792-806.
[19] 张波.基于前景理论的动态路径选择行为研究[D].上海:上海交通大学安泰经济与管理学院,2012.
Zhang Bo.Research on dynamic route choice behavior based on prospect theory[D].Shanghai:Antai College of Economics & Management Shanghai Jiao Tong University,2012.
[20] Asmaa A N,Ahmet T E, Tughrul A.Dynamic fault-tolerant three-dimensional cellular genetic algorithms[J].J. Parallel Distrib.Comput,2013,(73):122-136.
[1] 郭战兵, 张盼盼, 马雨帆. 分红波动程度对股价演化特征的影响分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 73-80.
[2] 刘文燕, 高齐圣. 基于贝叶斯网络的传统餐饮业食品安全风险分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 142-148.
[3] 汤淼, 范宏. 具有CDS的动态多层网络银行系统性风险研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 55-61.
[4] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[5] 卢周来, 孟斌斌, 吴伟韬, 赵晶, 戚刚, 赵扬帆. 复杂性科学视角下的金融研究新进展[J]. 复杂系统与复杂性科学, 2024, 21(2): 1-14.
[6] 常丁懿, 石娟, 瞿丽莉, 何子春, 张银龙, 郑鹏. 基于FOA-BP的风电运维人员不安全行为风险评价[J]. 复杂系统与复杂性科学, 2024, 21(1): 119-125.
[7] 潘弘杰, 范宏. 考虑网络结构的影子银行与银行系统稳定性研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 41-48.
[8] 李超然, 刘举胜, 宋美, 韩景倜, 于长锐. 演化博弈视角下的医患关系分析及对策研究[J]. 复杂系统与复杂性科学, 2022, 19(3): 44-54.
[9] 李春发, 曹颖颖, 王聪, 郝琳娜. 平台规制下直播电商三方策略演化博弈与仿真[J]. 复杂系统与复杂性科学, 2022, 19(1): 34-44.
[10] 李卓群, 杨玉健, 黄克兢. 考虑风险规避行为的生鲜供应链系统动态研究[J]. 复杂系统与复杂性科学, 2021, 18(3): 51-59.
[11] 张松明, 李红刚. 止损策略与市场行为级联[J]. 复杂系统与复杂性科学, 2021, 18(2): 21-28.
[12] 赵子鸣, 勾文沙, 高晓惠, 陈清华. COVID-19疫情防控需要社区监测及接触者追踪并重[J]. 复杂系统与复杂性科学, 2020, 17(4): 1-8.
[13] 刘超, 王淑娇, 刘宸琦, 刘思源. 国际股票市场风险传染效应研究——来自2007~2018年15个股票市场数据[J]. 复杂系统与复杂性科学, 2020, 17(2): 54-66.
[14] 肖琴, 罗帆. 基于复杂网络的两栖水上飞机起降安全风险演化[J]. 复杂系统与复杂性科学, 2019, 16(2): 19-30.
[15] 李春发, 王学敏, 来茜茜, 薛楠楠. “互联网+”手机回收模式缘何绩效不彰?——基于mABM的演化博弈仿真分析[J]. 复杂系统与复杂性科学, 2019, 16(1): 63-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed