Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (2): 59-64    DOI: 10.13306/j.1672-3813.2017.02.009
  本期目录 | 过刊浏览 | 高级检索 |
耦合神经网络中脉冲信号传输的噪声增强研究
方鸿雁, 潘园园, 孙华通, 张立, 段法兵
青岛大学复杂性科学研究所,山东 青岛 266071
Study of Noise-Enhanced Pulse Signal Transmission in Coupling Neural Networks
FANG Hongyan, PAN Yuanyuan, SUN Huatong, ZHANG Li, DUAN Fabing
Institute of Complexity Science, Qingdao University, Qingdao 266071, China
全文: PDF(1062 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 对积分发放神经元耦合网络中脉冲信号传输的噪声增强现象进行了研究。通过权矩阵控制神经元间耦合强度和网络结构,网络中脉冲刺激信号激励靶神经元,而网络内各神经元都受到内部噪声的驱动。研究表明,随着噪声强度的增加,神经网络输出发放率与离散脉冲信号发放率的互相关系数不断增加并达到极值,证实了脉冲信号传输中耦合神经网络中存在噪声增强现象。还进一步分析了门限电势、网络结构以及噪声类型对输入输出发放率之间互相关系数的影响。这些研究结果为进一步将随机共振理论应用到神经系统中脉冲信号传递问题提供了实际依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方鸿雁
潘园园
孙华通
张立
段法兵
关键词 耦合神经网络噪声增强脉冲信号互相关系数积分发放神经元    
Abstract:This paper studies the noise-enhanced pulse signal transmission in coupling neural networks composed of integrate-and-fire neurons. The coupling strengthsamong neurons and the structure of the network are described by the weight matrices. The input pulse stimulus is delivered to target neurons of the network, while all neurons in the network are driven by internal noise components. It is shown that, with the increase of noise intensity, the correlation coefficient of the firing rate of the neural network output and that of the pulse stimulus can be enhanced to an extreme point, which confirms the noise-enhanced pulse signal transmission phenomenon in coupling networks. We further analyze effects of the threshold voltage, the structure of network and the noise type on the correlation coefficient of the output-input firing rates. These results provide a practical basis for the further study of stochastic resonance to the pulse signal propagation in nervous systems.
Key wordscoupling neural networks    noise enhancement    pulse signal    correlation coefficient    integrate-and-fire neurons
收稿日期: 2017-01-10      出版日期: 2025-02-25
ZTFLH:  TN911.7  
  N945.12  
基金资助:国家自然科学基金(61573202);山东省科技发展计划(ZR2010FM006)
通讯作者: 段法兵(1974-),男,山东邹城人,博士,教授,主要研究方向为随机共振。   
作者简介: 方鸿雁(1994-),女,湖北黄冈人,硕士研究生,主要研究方向为信号处理与复杂性分析。
引用本文:   
方鸿雁, 潘园园, 孙华通, 张立, 段法兵. 耦合神经网络中脉冲信号传输的噪声增强研究[J]. 复杂系统与复杂性科学, 2017, 14(2): 59-64.
FANG Hongyan, PAN Yuanyuan, SUN Huatong, ZHANG Li, DUAN Fabing. Study of Noise-Enhanced Pulse Signal Transmission in Coupling Neural Networks[J]. Complex Systems and Complexity Science, 2017, 14(2): 59-64.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.02.009      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I2/59
[1] Longtin A. Stochastic resonance in neuron models[J].Journal of Statistical Physics, 1993, 70(1/2): 309-327.
[2] Wiesenfeld K, Moss F. Stochastic resonance and the benefits of noise: From ice ages to crayfish and SQUIDs[J].Nature, 1995, 373(6509): 33-36.
[3] Collins J J, Chow C C, Imhoff T T. Aperiodic stochastic resonance in excitable systems[J].Physical Review E, 1995, 52(4): 3321-3326.
[4] McDonnell M D, Abbott D. What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology[J].PLoS Computational Biology, 2009, 5(5):e1000348.
[5] Stocks N G, Mannella R. Generic noise-enhanced coding in neuronal arrays[J].Physical Review E, 2001, 64(3):030902.
[6] Henghan C, Chow C C, Collins J J, et al. Information measures quantifying aperiodic stochastic resonance[J].Physical Review E, 1996, 54(3): 2228-2231.
[7] 祁明, 许丽艳, 季冰, 等. 周期性语音信号传输的超阈值随机共振研究[J].复杂系统与复杂性科学, 2013, 10(3): 31-36.
Qi Ming,Xu Liyan,Ji Bing,et al.Supra-threshold stochastic resonance phenomenon of periodic voice signal transmission[J].Complex Systems and Complexity Science,2013, 10(3): 31-36.
[8] 韩晓鹏. 神经系统中随机共振现象研究[D].杭州:浙江大学, 2005.
Han Xiaopeng.The study of stochastic resonance in nervous system[D].Hangzhou:Zhejiang University,2005.
[9] Kaut O, Allert N, Coch C, et al. Stochastic resonance therapy in Parkinson’s disease. Neurorebabilitation, 2011, 28(4): 353-358.
[10] Arias P, Chouza M, Vivas J, et al. Effect of whole body vibration in Parkinson’s disease:a controlled study. Mov.Disord.2009, 24(6): 891-898.
[11] 王俊琦. 阈值神经元模型的随机共振[D].合肥:合肥工业大学, 2010.
Wang Junqi.Stochastic resonance of threshold neuron model[D].Hefei:Hefei University of Technology,2010.
[12] 王友国, 姜梦琦, 翟其清. 多阈值神经网络系统中的随机共振研究[J].计算机技术与发展, 2015, 25(12): 32-36.
Wang Youguo,Jiang Mengqi,Zhuo Qiqing.Research on stochastic resonance in multi-threshold neural network system[J].Computer Technology and Development,2015, 25(12): 32-36.
[13] 耿丽硕, 范影乐. 神经元网络模型的弱信号随机共振检测研究[J].计算机工程与应用, 2011, 47(2): 112-114.
Geng Lishuo,Fan Yingle.Research on neuron network of weak signal based on stochastic resonance detection[J].ComputerEngineeringandApplications,2011, 47(2): 112-114.
[14] Chapeau-Blondeau F, Godivier X, Chambet N. Stochastic resonance in a neuron model that transmits spike trains[J].Physical Review E, 1996, 53(1):1273-1275.
[15] Teramae J, Tsubo Y, Fukai T. Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links[J].Scientific Reports, 2012, 2(7): 485-491.
[16] 梁晓冰, 刘希顺, 刘安芝, 等. 噪声在脉冲耦合神经网络图像增强中的作用[J].中国生物医学工程学报, 2009, 28(4): 485-489.
Liang Xiaobing,Liu Xishun,Liu Anzhi,et al.Enhancement of digital image by pulse coupled neural networks with noise[J].Chinese Journal OfBiomedical Engineering,2009, 28(4): 485-489.
[17] Chacron M J, Longtin A, Pakdaman K. Chaotic firing in the sinusoidally forced leaky integrate-and-fire model with threshold fatigue[J].Physica D, 2004, 192(1): 138-160.
[18] 王风娇, 任昱昊, 赵进, 等. 耳蜗神经网络中语音信号传输的刺激条件信息研究[J].复杂系统与复杂性科学, 2015, 12(4): 104-108.
Wang Fengjiao,Ren Yuhao,Zhao Jin,et al.Study of specific-stimulus information for transmission of speech signals in cochlea neural networks[J].Complex Systems and Complexity Science,2015, 12(4): 104-108.
[19] Gabbiani F, James-Cox S. Mathematics for Neuroscientists[M].北京:北京出版社,2012.
[20] 任昱昊, 季冰, 许丽艳, 等. 震荡随机共振的信噪比增益研究与电路仿真[J].复杂系统与复杂性科学, 2015, 12(1): 104-109.
Ren Yuhao,Ji Bing,Xu Liyan,et al.Research andcircuitsimulation on SNR gain of vibrational stochastic resonance[J].Complex Systems and Complexity Science,2015, 12(1): 104-109.
[21] 童基均, 张光磊, 蔡强, 等. 阈值随机共振及其在低质量浓度气体检测中的应用[J].浙江大学学报(工学版), 2015, 49(1): 15-19.
Tong Jijun,Zhang Guanglei,Cai Qiang, et al.Application of threshold stochastic resonance in low concentration gas detecting[J].Journal of Zhejiang University(Engineering Science),2015, 49(1): 15-19.
[22] 郭永峰, 谭建国. 一类非线性神经网络系统的超阈值随机共振现象[J].物理学报, 2012, 61(17):55-59.
Guo Yongfeng,Tan Jianguo.Suprathreshold stochastic resonance of a non-linear multilevel threshold neuronal networks system[J].Acta Physica Sinica,2012, 61(17):55-59.
[23] Dayan P, Abbott L F. Theoretical Neuroscience[M].Cambridge, MA:MIT Press, 2001.
[24] Duan F, Chapeau-Blondeau F, Abbott D. Enhancing array stochastic resonance in ensemble of excitable systems[J].Journal of Statistical Mechanics, 2009(8): P08017.
[1] 韩博, 刘佳, 耿金花, 段法兵. 加权随机汇池网络中递归最小二乘算法研究[J]. 复杂系统与复杂性科学, 2020, 17(1): 81-86.
[2] 景文腾, 韩博, 耿金花, 许丽艳, 段法兵. 最优加权随机汇池网络的估计性能研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 89-93.
[3] 张雯, 吴宏伟, 于现阔, 范建伟, 苏瑞强, 郭非非, 杨洪军. 基于网络药理学的瓜蒌薤白半夏汤临床精准定位及药效成分研究[J]. 复杂系统与复杂性科学, 2018, 15(1): 2-10.
[4] 潘园园, 张力, 段玲玲, 段法兵. 离散Hopfield神经网络的手写数字识别研究[J]. 复杂系统与复杂性科学, 2018, 15(1): 75-79.
[5] 张立, 孙华通, 潘园园, 段法兵. 人体手部运动的振荡共振辅助系统实验研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 72-78.
[6] 朱福成, 郭锋. 白噪声作用下欠阻尼随机双稳系统中的随机共振[J]. 复杂系统与复杂性科学, 2021, 18(3): 60-66.
[7] 韩博, 景文腾, 耿金花, 段法兵. 最优加权随机汇池网络的自适应算法研究[J]. 复杂系统与复杂性科学, 2018, 15(4): 85-89.
[8] 池阔, 康建设, 张星辉, 杨志远, 赵斐. 基于匹配稳态随机共振的轴承故障诊断方法[J]. 复杂系统与复杂性科学, 2019, 16(2): 85-94.
[9] 景文腾, 耿金花, 韩博, 段法兵. 多阈值随机汇池网络自适应估计性能研究[J]. 复杂系统与复杂性科学, 2019, 16(3): 87-92.
[10] 陈楠, 王友国, 翟其清. 多阈值系统中的阈上随机共振研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 71-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed