Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (3): 58-68    DOI: 10.13306/j.1672-3813.2016.03.008
  本期目录 | 过刊浏览 | 高级检索 |
基于节点标号的Koch网络结构性质研究
翟因虎a,b, 王银河a
广东工业大学 a.自动化学院,b.信息工程学院,广州 510006
The Structural Properties of Koch Networks Based on Node Labels
ZHAI Yinhua,b , WANG Yinhea
a. School of Automation, b. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
全文: PDF(1548 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对正多边形Koch分形岛所映射成的Koch网络,根据节点接入网络的时间和位置信息给节点标号。在节点标号的基础上,研究网络的最短路由及计算最短路径长度;并分析网络的主要结构性质,如节点的度、度分布和累积度分布函数,以及网络的聚类系数、平均最短路径长度、度关联函数和介数中心性,得出结构性质的解析解。结果表明,所构建的Koch网络是无标度和小世界的;其聚类系数趋向于比较大的常数值;平均路径长度与网络节点数的对数呈正比关系,度相关函数、点介数和边介数都随节点度的变化而指数变化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟因虎
王银河
关键词 Koch网络节点标号网络性质最短路由    
Abstract:The Koch Fractal Island, which is starting from a regular polygon, is mapped to complex evolving Koch networks. The informative labels are given to nodes, the labels are based on the time and location when nodes are accessing to Koch networks. By the advantages of the informative labels, we get the exact solution of main structural properties of Koch networks, including degree distribution and cumulative degree distribution function, as well as the clustering coefficient, average shortest path length and the correlation function of degree, betweenness centrality and the shortest path routing and length. The results show that, Koch network is a scale-free and small-world network; its clustering coefficient tends to relatively large constant; average shortest path length is proportional to the logarithm of the size of networks; degree correlation function is exponential function relationship with node's degree.
Key wordsKoch networks    node labeling    network property    shortest path routing
收稿日期: 2015-01-15      出版日期: 2025-02-25
ZTFLH:  TP1  
基金资助:国家自然科学基金(61273219;F030203)
作者简介: 翟因虎(1974-),男,江西奉新人,博士研究生,讲师,主要研究方向为复杂网络辨识与控制等。
引用本文:   
翟因虎, 王银河. 基于节点标号的Koch网络结构性质研究[J]. 复杂系统与复杂性科学, 2016, 13(3): 58-68.
ZHAI Yinhu, WANG Yinhe. The Structural Properties of Koch Networks Based on Node Labels[J]. Complex Systems and Complexity Science, 2016, 13(3): 58-68.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.03.008      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I3/58
[1] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’networks[J].nature, 1998, 393(6684): 440-442.
[2] Barabási A L, Albert R. Emergence of scaling in random networks[J].science, 1999, 286(5439): 509-512.
[3] 章忠志, 周水庚, 方锦清. 复杂网络确定性模型研究的最新进展[J].复杂系统与复杂性科学, 2008, 5(4):29-46.
Zhang Zhongzhi, Zhou Shuigeng, Fan|Jinqing. Recent progress of deterministic models forcomplex networks[J].Complex Systems and Complexity Science, 2008, 5(4):29-46.
[4] Comellas F, Ozon J, Peters J G. Deterministic small-world communication networks[J].Information Processing Letters, 2000, 76(1): 83-90.
[5] Zhang Z, Zhou S, Qi Y, et al. Topologies and Laplacian spectra of a deterministic uniform recursive tree[J].The European Physical Journal B-Condensed Matter and Complex Systems, 2008, 63(4): 507-513.
[6] Barabási A L, Ravasz E, Vicsek T. Deterministic scale-free networks[J].Physica A: Statistical Mechanics and its Applications, 2001, 299(3): 559-564.
[7] Zhou T, Wang B H, Hui P M, et al. Topological properties of integer networks[J].Physica A: Statistical Mechanics and its Applications, 2006, 367: 613-618.
[8] 李永,方锦清,刘强. 多种确定性广义Farey组织的网络金字塔[J].物理学报,2010,05:2991-3000.
Li Yong, Fan Jingqing, Liu Qiang. Determinate generalized Farey organized network pyramid[J].Acta Physica Sinina, 2010,05:2991-3000.
[9] Andrade Jr J S, Herrmann H J, Andrade R F S, et al. Apollonian networks: simultaneously scale-free, small world, euclidean, space filling, and with matching graphs[J].Physical Review Letters, 2005, 94(1): 018702.
[10] Zhang Z, Chen L, Zhou S, et al. Exact analytical solution of average path length for Apollonian networks[J].arXiv preprint arXiv:0706.3491, 2007.[DB/OL].[2014-05-06].http://arxiv.org/abs/0706.3491.
[11] 邢长明,刘方爱.基于Sierpinski分形垫的确定性复杂网络演化模型研究[J].物理学报,2010,59(3):1608-1614.
Xing Chang-ming, Liu Fan-ai.[J].Research on the determinstic complex network model based on the Sierpinski network[J].ACTA PHYSICA SININA, 2010,59(3):1608-1614.
[12] Zhang Z, Zhou S, Fang L, et al. Maximal planar scale-free Sierpinski networks with small-world effect and power law strength-degree correlation[J].EPL (Europhysics Letters), 2007, 79(3): 38007.
[13] Zhang ZH ZH, Qi Y, Zhou SH G,et al. Explicit determination of mean first-passage time for random walks on deterministic uniform recursive trees[J].Physical Review E, 2010, 81:016114.
[14] Zhang ZH ZH, Yang Y H, Gao SH Y. Role of fractal dimension in random walks on scale-free networks[J].European Physical Journal B, 2011, 84:331-338.
[15] Wu B, Zhang|ZH ZH, Chen G R. Properties and applications of Laplacian spectra for the Koch networks[J].Journal of Physics A: Mathematical and Theoretical, 2012, 45:025102.
[16] Zhang ZH ZH, Shan T, Chen G R. Random walks on weighted networks[J].Physical Review E, 2013, 87:012112.
[17] Zhang Z, Wu B, Comellas F. The number of spanning trees in Apollonian networks[J].Discrete Applied Mathematics, 2014, 169: 206-213.
[18] Zhang Z, Gao S, Chen L, et al. Mapping Koch curves into scale-free small-world networks[J].Journal of Physics A: Mathematical and Theoretical, 2010, 43(39): 395101.
[19] Zhang Z, Zhou S, Xie W, et al. Standard random walks and trapping on the Koch network with scale-free behavior and small-world effect[J].Physical Review E, 2009, 79(6): 061113.
[20] Zhang Z, Gao S, Xie W. Impact of degree heterogeneity on the behavior of trapping in Koch networks[J].Chaos: an Interdisciplinary Journal of Nonlinear Science, 2010, 20(4): 043112.
[21] Zhang Z, Gao S. Scaling of mean first-passage time as efficiency measure of nodes sending information on scale-free Koch networks[J].The European Physical Journal B-Condensed Matter and Complex Systems, 2011, 80(2): 209-216.
[22] 刘甲雪,孔祥木.无标度立体Koch网络的建立及其结构性质研究[J].物理学报,2010,4:2244-2249.
Liu Jia-xue, Kong Xiang-mu. Establishment and structure properties on scale-free Koch network[J].Acta Physica Sinna, 2010,4:2244-2249.
[23] Chen R, Fu X, Wu Q. On topological properties of the octahedral Koch network[J].Physica A: Statistical Mechanics and its Applications, 2012, 391(3): 880-886.
[24] Zhang J, Sun W. The structural properties of the generalized Koch network[J].Journal of Statistical Mechanics: Theory and Experiment, 2010, (7): P07011.
[25] Zhang J Y, Sun W G, Chen G R. Exact scaling for the mean first-passage time of random walks on a generalized Koch network with a trap[J].Chinese Physics B, 2012, 21(3): 8901.
[26] Sun W, Zhang J, Wu Y. Novel evolving small-world scale-free Koch networks[J].Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011(3): P03021.
[27] Wu Z K, Hou B Y, Zhang H S, et al. Scaling of average weighted shortest path and average receiving time on weighted expanded Koch networks[J].International Journal of Modern Physics B, 2014, 28(28):2699-2700.
[28] Zhang Z, Comellas F, Fertin G, et al. Vertex labeling and routing in expanded Apollonian networks[J].Journal of Physics A: Mathematical and Theoretical, 2008, 41(3): 035004.
[29] Comellas F, Miralles A. Vertex labeling and routing in self-similar outerplanar unclustered graphs modeling complex networks[J].Journal of Physics A: Mathematical and Theoretical, 2009, 42(42): 425001.
[30] Comellas F, Miralles A. Label-based routing for a family of scale-free, modular, planar and unclustered graphs[J].Journal of Physics A: Mathematical and Theoretical, 2011, 44(20): 205102.
[1] 杨俊起, 刘飞洋, 张宏伟. 基于改进蚁群算法的复杂环境路径规划[J]. 复杂系统与复杂性科学, 2024, 21(3): 93-99.
[2] 崔孝凯, 王庆芝, 刘其朋. 基于数据驱动的锂电池健康状态预测[J]. 复杂系统与复杂性科学, 2024, 21(3): 154-159.
[3] 刘婕, 孙更新, 宾晟. 基于改进KNN近邻实体的知识图谱嵌入模型[J]. 复杂系统与复杂性科学, 2024, 21(2): 30-37.
[4] 李若晨, 肖人彬. 基于改进狼群算法优化LSTM网络的舆情演化预测[J]. 复杂系统与复杂性科学, 2024, 21(1): 1-11.
[5] 张可琨, 曲大义, 宋慧, 戴守晨. 自动驾驶车辆换道博弈策略分析及建模[J]. 复杂系统与复杂性科学, 2023, 20(2): 60-67.
[6] 张梦真, 王庆芝, 刘其朋. 基于层次化可导航小世界网络改进的SeqSLAM算法[J]. 复杂系统与复杂性科学, 2023, 20(1): 105-110.
[7] 颜闽秀, 谢俊红. 可调数目吸引子共存的混沌系统及同步控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 64-71.
[8] 闫安, 宋运忠. 离散事件系统中的攻击检测和修复[J]. 复杂系统与复杂性科学, 2022, 19(4): 99-106.
[9] 冯万典, 彭世国, 曾梓贤. 脉冲控制下半马尔可夫随机MAS的均方一致性[J]. 复杂系统与复杂性科学, 2022, 19(3): 81-87.
[10] 韩笑, 张梦真, 吴易, 崔孝凯, 邱长滨, 王庆芝, 刘其朋. 无人驾驶系统中执行器攻击检测算法设计[J]. 复杂系统与复杂性科学, 2022, 19(3): 88-93.
[11] 李炎, 李宪, 杨明业, 孙国庆. 基于概率优化的神经网络模型组合算法[J]. 复杂系统与复杂性科学, 2022, 19(3): 104-110.
[12] 孔珊, 仲昭林, 张纪会. 多路径选择变速双目标物流配送路径规划[J]. 复杂系统与复杂性科学, 2022, 19(1): 74-80.
[13] 朱锋, 刘其朋. 基于生成对抗网络的半监督图像语义分割[J]. 复杂系统与复杂性科学, 2021, 18(1): 23-29.
[14] 王潇, 纪志坚. 基于MAS的合作—竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
[15] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed