Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (2): 39-45    DOI: 10.13306/j.1672-3813.2017.02.006
  本期目录 | 过刊浏览 | 高级检索 |
基于超网络的海关物流监控风险管理方法优化研究
廖日卿
1.上海海事大学交通运输学院,上海 201306;
2.上海海关学院海关管理系,上海 201204
Supernetwork-Based Risk Management of Customs Logistics Monitoring System
LIAO Riqing
1. College of Transport and Communications, Shanghai Maritime University, Shanghai 201306, China;
2. Customs Management Department, Shanghai Customs College, Shanghai 201204, China
全文: PDF(1132 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为应对日益增多的国际物流风险,基于超网络理论及方法构建了海关物流监控超网络(CLMSN),创建了两个考虑了超网络节点静态维度和动态维度特性的风险判定指标,提出了一种高风险节点评判算法。通过算例验证了该算法能够识别判定CLMSN中的高风险节点。采用此算法判定高风险节点并优先实施重点监控能够控制风险发生及传播的可能性,从而对目前海关物流监控风险管理进行有效优化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
廖日卿
关键词 超网络海关物流监控高风险节点风险管理优化    
Abstract:In order to cope with the increasing international logistics risk, optimizing Customs Logistics Monitoring system risk management is necessary. This article use super-network theory and method to build Customs Logistics Monitoring Super-network(CLMSN) and put forward an evaluation algorithm considering static and dynamic characteristic of nodes. Numerical analyses of examples show that the method is correct and effective in identifying high risk nodes. Using the algorithm in this paper to determine the high risk nodes and giving priority to the implementation of key monitoring can control the occurrence and spread of risk, and will effectively improve the Customs Logistics risk management.
Key wordssuper-network    customs logistics monitoring    high-risk node    risk management    optimization
收稿日期: 2016-09-22      出版日期: 2025-02-25
ZTFLH:  N94  
基金资助:上海市教委科研创新项目(14YS160);上海市哲学社会科学规划课题(2014BGL012);上海海关学院科研创新团队(2312229)
作者简介: 廖日卿(1981-),女,福建三明人,博士研究生,讲师,主要研究方向为海关风险管理、物流管理。
引用本文:   
廖日卿. 基于超网络的海关物流监控风险管理方法优化研究[J]. 复杂系统与复杂性科学, 2017, 14(2): 39-45.
LIAO Riqing. Supernetwork-Based Risk Management of Customs Logistics Monitoring System[J]. Complex Systems and Complexity Science, 2017, 14(2): 39-45.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.02.006      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I2/39
[1] 段景辉.海关风险管理分析与评价方法[J].上海海关学院学报,2012,3:35-43.
Duan Jinghui. Analysis and evaluation method on customs risk management[J].Journal of Shanghai Customs College,2012,3:35-43.
[2] 张彦.海关监管职能的优化研究——以风险管理为视角[D].上海:上海交通大学,2009.
Zhang Yan. Study on optimization of the customs supervises——the visual angle of the risk management[D].Shanghai:Shanghai Jiao Tong University,2009.
[3] 韩婷婷.海关物流监控风险管理[D].大连:大连海事大学,2008.
Han Tingting. Risk management on customs logistics supervision[D].Dalian : Dalian Maritime University,2008.
[4] Anna Nagurney. Optimal supply chain network design and redesign at minimal total cost and with demand satisfaction[J].International Journal of Production Economics,2010,128(1): 200-208.
[5] Anna Nagurney. Supernetworks: the science of complexity[J].上海理工大学学报,2011, 3: 205-228.
[6] Smith B G. Socially distributing public relations:twitter,haiti,and interactivity in social media[J].Public Relations Review,2010,36( 4): 329-335.
[7] Westerman D,Spence P R,Heide B. A social network as information: the effect of system generated reports of connectedness on credibility on Twitter[J].Computers in Human Behavior,2012,28(1):199-206.
[8] 王志平,王众托. 超网络理论及其应用[M].北京:科学出版社,2008.
[9] 王众托,王志平. 超网络初探[J].管理学报,2008, 5(1):1-8.
Wang Zhongtuo, Wang Zhiping. Elementary study of supernet works[J].Chinese Journal of Management.2008,5(1): 1-8.
[10] 王众托.关于超网络的一点思考[J].上海理工大学学报,2011, 3: 229-237.
Wang Zhongtuo. Reflection on supernetwork[J].Journal of University of Shanghai for Science and Technology,2011, 3: 229-237.
[11] 刘军.社会网络分析导论[M].北京: 社会科学文献出版社,2004.
[12] 刘军.整体网分析: UCINET 软件实用指南[M].2版. 上海:格致出版社,2014.
[13] 胡枫,赵海兴,何佳倍,等.基于超图结构的科研合作网络演化模型[J].物理学报,2013,19:1-8.
Hu Feng,Zhao Haixing,He Jiabei,et al.An evolving model for hypergraph-structure-based scientific collaboration networks[J].Acta Physica Sinica,2013,19:1-8.
[14] 漆玉虎,郭进利,王志省.超网络度参数研究[J].科技与管理,2013,01:34-38.
Qi Yuhu, Guo Jinli, Wang Zhixing. Research on the degree of hypernetwork[J].Science-Technology and Management,2013,01:34-38.
[15] 朱莉,曹杰.灾害风险下应急资源调配的超网络优化研究[J].中国管理科学,2012,12:141-147.
Zhu Li, Cao Jie. Supernetwork optimization of emergency resource allocation under disaster risk[J].Chinese Journal of Management Science,2012,12:141-147.
[16] 马军.供应链超网络均衡模型研究[D].大连:大连理工大学,2013.
Ma Jun. Research on supply chain supernetwork equilibrium models[D].Dalian:Dalian University of Technology,2013.
[17] 黄建华,党延忠.快递超网络模型及基于效率的优化方法[J].北京理工大学学报,2011, 6: 68-72.
Huang Jianhua, Dang Yanzhong. Express super-network model and efficiency-based optimization method[J].Journal of Beijing Institution of Technology(Social Sciences Edition)2011, 6: 68-72.
[18] 于丽英,胡朝辉.超网络视角下的高校公共危机预警管理研究[J].中国安全学报,2014, 7: 146-151.
Yu Liying,Hu Chaohui. Research on public crisis early-warning management in universities from a supernetwork perspective[J].China Safety Science Journal, 2014, 7: 146-151.
[19] 马宁,刘怡君.基于超网络的舆论领袖识别应用研究[J].中国科学院院刊,2012, 5: 586-594.
Ma Ning, Liu Yijun. Recognition of online opinion leaders based on supernetwork analysis[J].Bulletin of Chinese Academy of Sciences, 2012, 5: 586-594.
[1] 张志霞, 李朋璋. 改进HHO算法在易逝品配送中心选址中的应用[J]. 复杂系统与复杂性科学, 2024, 21(4): 91-98.
[2] 周斌, 马福祥, 高淑洁, 马秀娟, 李明杰. 超边内部结构对无标度超网络鲁棒性的影响[J]. 复杂系统与复杂性科学, 2024, 21(3): 1-8.
[3] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[4] 杨俊起, 刘飞洋, 张宏伟. 基于改进蚁群算法的复杂环境路径规划[J]. 复杂系统与复杂性科学, 2024, 21(3): 93-99.
[5] 田梦龙, 张纪会. 跨层四向穿梭车仓库复合作业路径优化[J]. 复杂系统与复杂性科学, 2024, 21(3): 100-107.
[6] 崔孝凯, 王庆芝, 刘其朋. 基于数据驱动的锂电池健康状态预测[J]. 复杂系统与复杂性科学, 2024, 21(3): 154-159.
[7] 廖阳, 孟豪南, 李迎峰, 李思卿. 需求变动视角下虚拟养老服务人员调度研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 144-153.
[8] 江雨燕, 尹莉, 王付宇. 多配送中心半开放式冷链物流配送路径优化[J]. 复杂系统与复杂性科学, 2024, 21(2): 137-146.
[9] 常丁懿, 石娟, 瞿丽莉, 何子春, 张银龙, 郑鹏. 基于FOA-BP的风电运维人员不安全行为风险评价[J]. 复杂系统与复杂性科学, 2024, 21(1): 119-125.
[10] 吴英晗, 李明达, 胡枫. 基于熵的多属性决策超网络重要节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 40-46.
[11] 王姗姗, 张纪会. “货到人”拣选系统订单分批优化[J]. 复杂系统与复杂性科学, 2022, 19(3): 74-80.
[12] 李炎, 李宪, 杨明业, 孙国庆. 基于概率优化的神经网络模型组合算法[J]. 复杂系统与复杂性科学, 2022, 19(3): 104-110.
[13] 王付宇, 张康. 考虑道路约束的应急物资调度优化模型与算法[J]. 复杂系统与复杂性科学, 2022, 19(2): 53-62.
[14] 周丽娜, 李发旭, 巩云超, 胡枫. 基于K-shell的超网络关键节点识别方法[J]. 复杂系统与复杂性科学, 2021, 18(3): 15-22.
[15] 牟亮, 赵红, 李燕, 仇俊政, 崔翔宇, 袁焕涛. 基于改进NSGA-Ⅱ的区域交通信号优化控制[J]. 复杂系统与复杂性科学, 2021, 18(3): 80-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed