Please wait a minute...
文章检索
复杂系统与复杂性科学  2026, Vol. 23 Issue (1): 138-145    DOI: 10.13306/j.1672-3813.2026.01.017
  研究前沿 本期目录 | 过刊浏览 | 高级检索 |
融合邻域关系和实体的知识图谱补全模型
高瑞, 孙更新, 宾晟
青岛大学计算机科学技术学院,山东 青岛 266071
Integrating Local Relationships and Entities in Knowledge Graph Completion Model
GAO Rui, SUN Gengxin, BIN Sheng
College of Computer Science & Technology, Qingdao University, Qingdao 266071, China
全文: PDF(4555 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 鉴于大多数现有的知识图谱补全方法采用独立处理三元组的方式,而忽略邻域关系和实体对中心实体的不同贡献度的问题,提出了REGNN的图神经网络模型。该模型从邻域内的关系和实体中获得的特征信息被嵌入到中心实体的更新中,通过聚合实体和关系特征来丰富中心实体的表征。实验结果显示,与传统的图神经网络模型相比,在FB15K-237数据集上,REGNN模型的MMR和Hits@10指标分别提高了3.3%和1.5%,在WN18RR数据集上分别提高了1.4%和3.6%,从而验证了该模型的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高瑞
孙更新
宾晟
关键词 知识图谱知识图谱补全图神经网络聚合    
Abstract:Given that the majority of existing knowledge graph completion methods adopt an independent processing approach for triplets, overlooking the varying contributions of neighborhood relations and entities to the central entity,this paper introduces a graph neural network model called REGNN that integrates neighborhood relations and entities. In this model, feature information from relations and entities within the neighborhood is incorporated into the central entity′s update, enriching the representation of the central entity through the aggregation of entity and relation features. Experimental results demonstrate that, in comparison to traditional graph neural network models, REGNN model achieves improvements of 3.3% and 1.5% in terms of the MMR and Hits@10 metrics on the FB15K-237 dataset, and improvements of 1.4% and 3.6% on the WN18RR dataset, thus validating the effectiveness of REGNN model.
Key wordsknowledge graph    knowledge graph completion    graph neural networks    aggregation
收稿日期: 2023-10-20      出版日期: 2026-02-13
ZTFLH:  TP181  
基金资助:教育部人文社会科学规划基金(21YJA860001);山东省自然基金面上项目(ZR2021MG006)
通讯作者: 宾 晟(1979-),女,山东淄博人,博士,教授,主要研究方向为复杂网络中传播动力学及相关传播模型。   
作者简介: 高 瑞(1997-),女,山东泰安人,硕士研究生,主要研究方向为复杂网络。
引用本文:   
高瑞, 孙更新, 宾晟. 融合邻域关系和实体的知识图谱补全模型[J]. 复杂系统与复杂性科学, 2026, 23(1): 138-145.
GAO Rui, SUN Gengxin, BIN Sheng. Integrating Local Relationships and Entities in Knowledge Graph Completion Model[J]. Complex Systems and Complexity Science, 2026, 23(1): 138-145.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2026.01.017      或      https://fzkx.qdu.edu.cn/CN/Y2026/V23/I1/138
[1] CUI H, PENG T, XIAO F, et al. Incorporating anticipation embedding into reinforcement learning framework for multi-hop knowledge graph question answering [J]. Information Sciences: an International Journal,2023, 619: 745-61.
[2] PHAN T, DO P. Building a Vietnamese question answering system based on knowledge graph and distributed CNN[J]. Neural Computing and Applications, 2021, 33(21): 14887-14907.
[3] HUANG X, ZHANG J, LI D, et al. Knowledge graph embedding based question answering[C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining.New York:ACM, 2019: 105-113.
[4] XIA L, LIANG Y, LENG J, et al. Maintenance planning recommendation of complex industrial equipment based on knowledge graph and graph neural network [J]. Reliability Engineering & System Safety, 2023, 232: 109068.
[5] YANG Y, HUANG C, XIA L, et al. Knowledge graph contrastive learning for recommendation [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM, 2022: 1434-1443.
[6] SHI K, CAI X, YANG L, et al. Enriched entity representation of knowledge graph for text generation[J]. Complex & Intelligent Systems, 2023, 9(2): 2019-2030.
[7] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion [C]// Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.New York:ACM, 2014: 601-610.
[8] WANG Q, MAO Z, WANG B, et al. Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743.
[9] BANSAL T, JUAN D C, RAVI S, et al. A2N: Attending to neighbors for knowledge graph inference [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Florence:ACL, 2019: 4387-4392.
[10] VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[DB/OL].(2020-01-18)[2023-10-10].https://arxiv.org/pdf/1911.03082.pdf.
[11] VASHISHTH S, SANYAL S, NITIN V, et al. Interacte: improving convolution-based knowledge graph embeddings by increasing feature interactions [C]// Proceedings of the AAAI Conference on Artificial Intelligence.New York:AAAI, 2020, 34(3): 3009-3016.
[12] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[J]. Advances in Neural Information Processing Systems,2013,2: 2787-2795.
[13] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes [C]// Proceedings of the AAAI Conference on Artificial Intelligence.Québec:AAAI, 2014.
[14] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion [C]// Proceedings of the AAAI Conference on Artificial Intelligence.California:AAAI, 2015.
[15] XIAO H, HUANG M, HAO Y, et al. TransA: An adaptive approach for knowledge graph embedding[DB/OL].(2015-09-28) [2023-10-09]. https://arxiv.org/pdf/1509.05490.pdf.
[16] SUN Z, DENG Z H, NIE J Y, et al. Rotate: knowledge graph embedding by relational rotation in complex space[EB/OL].(2019-02-16)[2023-10-09]. https://arxiv.org/abs/1902.10197.
[17] YANG B, YIH W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[DB/OL].(2015-08-29)[2023-10-09]. https://arxiv.org/pdf/1412.6575.pdf.
[18] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction [C]//International Conference on Machine Learning. New York:PMLR, 2016: 2071-2080.
[19] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2d knowledge graph embeddings [C]// Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans:AAAI,2018.
[20] JIANG X, WANG Q, WANG B. Adaptive convolution for multi-relational learning [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).Minnesota:ACL, 2019: 978-987.
[21] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]//The Semantic Web: 15th International Conference.Heraklion:Springer International Publishing, 2018: 593-607.
[22] SHANG C, TANG Y, HUANG J, et al. End-to-end structure-aware convolutional networks for knowledge base completion [C]//Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu:AAAI,2019, 33(1): 3060-3067.
[1] 韩忠明, 张舒群, 刘燕, 胡启文, 杨伟杰. 基于二部联合网络的属性缺失图学习方法[J]. 复杂系统与复杂性科学, 2025, 22(2): 55-63.
[2] 张元东, 张先杰, 张若楠, 张海峰. 基于多层超图卷积神经网络的故障诊断方法[J]. 复杂系统与复杂性科学, 2025, 22(1): 131-137.
[3] 刘婕, 孙更新, 宾晟. 基于改进KNN近邻实体的知识图谱嵌入模型[J]. 复杂系统与复杂性科学, 2024, 21(2): 30-37.
[4] 张梦真, 王庆芝, 刘其朋. 基于层次化可导航小世界网络改进的SeqSLAM算法[J]. 复杂系统与复杂性科学, 2023, 20(1): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed