Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (2): 44-52    DOI: 10.13306/j.1672-3813.2016.02.006
  本期目录 | 过刊浏览 | 高级检索 |
复杂网络在质量管理中的应用研究
王福红, 郭进利, 索琪, 张乾
上海理工大学管理学院,上海 200093
Product Quality Management Based on Complex Networks Theory
WANG Fuhong, GUO Jinli, SUO Qi, ZHANG Qian
Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
全文: PDF(1484 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 以PCBA生产过程中的潜在质量失效因素为节点,以潜在质量失效因素之间的关系为边,建立质量失效因素加权网络。研究该加权网络的拓扑结构,结果表明:质量失效因素网为无标度网络,服从幂律分布;根据点权强度、集聚系数、介数、特征向量值找到重要和关键质控点。将复杂网络理论与鱼骨图、FMEA等定性质量工具相结合,可有效弥补FMEA的不足;在微观和宏观两个层面找到关键的质量失效因素,更容易抓住质量管控的重点;执行相应的质量预防和改进措施;可提高零缺陷质量管理系统建立的效率和全面质量管理的效果;复杂网络可作为质量数据挖掘的一种有效工具和分析方法;为PCBA产业的质量管理提供理论和实践上的借鉴意义,并为质量预防和质量改进提供了一种全新的研究视角。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王福红
郭进利
索琪
张乾
关键词 复杂网络质量失效因素网PCBA零缺陷FMEA    
Abstract:The paper proposes a weighted network which regards the potential quality failure factor as a node and the relationships between the potential quality failure factors as edges. We study the topology structure of the weighted network. The results show that the network is scale-free. According to vertex strength, cluster coefficient, betweenness and eigenvector, we find the important quality control points. We combine complex network theory with the qualitative quality tools such as fishbone diagram and FMEA. We can effectively find the key quality failure factors and make up the inadequacy of FMEA so that the key point of quality control is easily caught and the quality prevention and improvement is implemented. We provide a new perspective to study quality prevention and improvement, and improve the efficiency of zero defect quality management system and the effect of total quality management.
Key wordscomplex network    quality factors network    PCBA    zero defect    FMEA
收稿日期: 2014-01-14      出版日期: 2025-02-25
ZTFLH:  TP114.2  
基金资助:国家自然基金项目(71571119); 沪江基金(A14006);上海市一流学科建设项目(S1201YLXK)
通讯作者: 郭进利(1960-),男,陕西西安人,教授,主要研究方向为工业工程为复杂网络。   
作者简介: 王福红(1975-),女,山东德州人,博士,主要研究方向为复杂网络、质量管理。
引用本文:   
王福红, 郭进利, 索琪, 张乾. 复杂网络在质量管理中的应用研究[J]. 复杂系统与复杂性科学, 2016, 13(2): 44-52.
WANG Fuhong, GUO Jinli, SUO Qi, ZHANG Qian. Product Quality Management Based on Complex Networks Theory[J]. Complex Systems and Complexity Science, 2016, 13(2): 44-52.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.02.006      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I2/44
[1] 杨永华,张沙.电子企业质量管理[M].深圳:海天出版社,2000.
[2] 高鲁彬,郭进利.基于复杂网络的城市燃气输配系统失效因素分析[J].中国安全科学学报,2010,20(6): 111-115.
Gao Lubin, Guo Jinli. Failure factor analysis of urban gas transmission and distribution system based on complex networks[J].China Safety Science Journal, 2010,20(6):111-115.
[3] 方爱丽,高齐圣,张嗣瀛,等. 基于复杂网络的质量系统分析[J].青岛大学学报(工程技术版),2007,22(1): 82-86.
Fang Aili, Gao Qisheng, Zhang Siying, et al. Quality system analysis base on complex network[J].Journal of QingDao University(E&T),2007,22(1): 82-86.
[4] 耿金花,高齐圣,方爱丽.质量改进:一个典型的复杂适应系统[J].商业研究,2007,(9):52-54.
Geng Jinhua, Gao Qisheng, Fang Aili. Quality improvement: a typical complex adaptive system[J].Commercial Research, 2007,(9):52-54.
[5] 高齐圣,张嗣瀛.复杂科学与质量管理研究[J].管理工程学报,2005,19(4):133-134.
Gao Qisheng, Zhang Siying, Research on complexity science and quality management[J].Journal of Industrial Engineering Engineering Management,19(4): 133-134.
[6] 郭进利.复杂网络与人类行为动力学演化模型[M].北京:科学出版社,2013.
[7] Barabási A L, Albert R. Emergence of scaling in random networks[J].Science,1999,286(5439):509-512.
[8] Xiao N, Huang H Z, Li Y, et al. Multiple failure modes analysis and weighted risk priority number evaluation in FMEA[J].Engineering Failure Analysis, 2011, 18(4): 1162-1170.
[9] Kumru M, Kumru P Y. Fuzzy FMEA application to improve purchasing process in a public hospital[J].Applied Soft Computing, 2013, 13(1): 721-733.
[10] 阿布力孜·布力布力,张新国.克服失效的强有力TFMEA技术研究综述[J].科技进步与对策,2013, 30(10):156-159.
A bulizi Bulibuli, Zhang Xinguo. TFMEA technology research review[J].Science&Technology Progress and Policy, 2013, 30(10): 156-159.
[11] 张公绪,孙静.新编质量管理学[M].北京:高等教育出版社,2003.8.
[12] 杨凯, 张宁, 苏树清. 个人微博用户网络的节点中心性研究[J].上海理工大学学报, 2015, 37(1): 43-48.
Yang Kai, Zhang Ning, Sun Shuqing. Node centrality on individual microblog user network[J].Journal of University of Shanghai for Science and Technology, 2015,37(1):43-48.
[13] 冯力.现代电子装联质量管理[M].西安:西安电子科技大学出版社,2009.12.
[14] 郑建国, 张震坤, 刘健斌,等.系统零缺陷检测实验室TQM的构建原理与实施[M].哈尔滨:黑龙江人民出版社,2009.2.
[15] 宋文强.图解TPM管理实务案例实践版[M].北京:化学工业出版社,2012.
[16] 张友诚.现代企业中的全面生产设备管理(TPEM)[M].长沙:湖南科学技术出版社, 2010.
[17] 钱圣盈,吴维,王燕. 零缺陷质量管理系统中的防错技木[J].上海质量,2009,(12):42-46.
Qian Shengying, Wu Yan, Wang Yan. Mistake proofing techniques of zero defect quality management system[J].Shanghai Quality,2009, (12):42-46.
[18] 奚立峰, 宋玉红. 零缺陷质量管理思想的应用与实践[J].工业工程与管理, 2003, 8(1): 5-8.
Xi Lifeng, Song Yuhong. The application and practice of zero defect quality management[J].Industrial Engineering and Management, 2003,
8(1): 5-8.
[19] 李先红, 陈小平. 电路原理图的加权网络分析[J].复杂系统与复杂性科学, 2008, 5(1): 61-66.
Li Xianhong, Chen Xiaoping. Analysis of an electronic circuit diagram based on the weighted network[J].Complex Systems and Complexity Science, 2008,5(1): 61-66.
[20] Yeh T M, Chen L Y. Fuzzy-based risk priority number in FMEA for semiconductor wafer processes[J].International Journal of Production Research, 2014, 52(2): 539-549.
[21] Almannai B, Greenough R, Kay J. A decision support tool based on QFD and FMEA for the selection of manufacturing automation technologies[J].Robotics and Computer-Integrated Manufacturing, 2008, 24(4): 501-507.
[22] Chin K S, Chan A, Yang J B. Development of a fuzzy FMEA based product design system[J].The International Journal of Advanced Manufacturing Technology, 2008, 36(7-8): 633-649.
[23] Segismundo A, Miguel P A C. Failure mode and effects analysis (FMEA) in the context of risk management in new product development: A case study in an automotive company[J].International Journal of Quality & Reliability Management, 2008, 25(9): 899-912.
[24] Maier T. FMEA and FTA to Support Safe Design of Embedded Software in Safety-Critical Systems[M].London: Springer, 1997.
[1] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[2] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[3] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[4] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[5] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[6] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[7] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[8] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[9] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[10] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[11] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[12] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[13] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[14] 杨文东, 黄依宁, 张生润. 基于多层复杂网络的RCEP国际航线网络特征分析[J]. 复杂系统与复杂性科学, 2023, 20(3): 60-67.
[15] 曾茜, 韩华, 李秋晖, 李巧丽. 基于分包的混合朴素贝叶斯链路预测模型[J]. 复杂系统与复杂性科学, 2023, 20(2): 10-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed