Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (2): 97-104    DOI: 10.13306/j.1672-3813.2016.02.012
  本期目录 | 过刊浏览 | 高级检索 |
基于Nelder-Mead单纯形法的改进量子行为粒子群算法
郑伟博, 张纪会
青岛大学复杂性科学研究所,山东 青岛 266071
A Improved Quantum Behaved Particle Swarm Optimization Algorithm Using Nelder and Mead′s Simplex Algorithm
ZHENG Weibo, ZHANG Jihui
Institute of Complexity Science, Qingdao University, Qingdao 266071, China
全文: PDF(961 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对PSO算法搜索精度较低,并且在复杂多模态函数优化中,容易陷入局部极值的问题,提出了一种改进的量子行为粒子群优化算法。研究了该算法的基本原理、给出了算法流程并采用正交试验的方式获得了一套通用性较强的算法参数。并以CEC’13的28个测试函数作为测试集,采用Wilcoxon符号秩检验将NM-QPSO算法分别与PSO算法和QPSO算法的误差进行比较试验。试验表明:NM-QPSO算法在统计意义上优于传统的PSO算法和QPSO算法,并且在高维函数优化中,具有显著优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑伟博
张纪会
关键词 群体智能粒子群优化算法量子行为粒子群优化算法Nelder Mead单纯形法    
Abstract:PSO algorithm is poor in search accuracy and prone to fall into the local extremum when solving complex multimodal function optimization problem. So, we propose an improved quantum behaved particle swarm optimization algorithm. This paper studies the fundamentals and basic procedure of that algorithm, An orthogonal test for parameter selection is designed to select a set of reasonable control parameters. We use a suite of 28 test functions from CEC’13 as test set. NM-QPSO is compared with both of traditional PSO and QPSO by using the Wilcoxon Signed Ranks Test respectively. Tests show that the NM-QPSO algorithm has better performance than the traditional PSO and QPSO algorithms in statistical sense, and it has obvious advantages in the high-dimensional function optimization.
Key wordsswarm intelligence    particle swarm optimization    nelder mead simplex method
收稿日期: 2015-07-10      出版日期: 2025-02-25
ZTFLH:  TP18  
基金资助:山东省自然科学基金(ZR2010GM006)
通讯作者: 张纪会(1969-),男,山东青岛人,博士,教授,主要研究方向为物流系统工程,智能优化。   
作者简介: 郑伟博(1989-),男,山东潍坊人,硕士研究生,主要研究方向为物流系统工程,智能优化。
引用本文:   
郑伟博, 张纪会. 基于Nelder-Mead单纯形法的改进量子行为粒子群算法[J]. 复杂系统与复杂性科学, 2016, 13(2): 97-104.
ZHENG Weibo, ZHANG Jihui. A Improved Quantum Behaved Particle Swarm Optimization Algorithm Using Nelder and Mead′s Simplex Algorithm[J]. Complex Systems and Complexity Science, 2016, 13(2): 97-104.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.02.012      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I2/97
[1] Millonas M M. Swarms, phase transitions, and collective intelligence[C]//Marks R J, Palaniswami M, Fogel D B. Computational Intelligence: A Dynamic System Perspective. Richmond, TX, USA: Institute of Electrical & Electronics Engineers(IEEE).1994: 137-151.
[2] Kennedy J. Particle swarm optimization[C]//International Conference on Neural Networks. Western Austalia, 1995: 1942-1948.
[3] 冯奇峰,李言.改进粒子群优化算法在工程优化问题中的应用研究[J].仪器仪表学报,2006,26(9): 984-987.
Feng Qi Feng,Li Yan. Application of improved particle swarm optimization algorithm in engineering optimization problems[J].Chinese Journal of Scientific Instrument, 2006, 26(9):984-987.
[4] Gülcü S, Kodaz H. A novel parallel multi-swarm algorithm based on comprehensive learning particle swarm optimization[J].Engineering Applications of Artificial Intelligence, 2015, 45: 33-45.
[5] 张勇,巩敦卫,张婉秋.一种基于单纯形法的改进微粒群优化算法及其收敛性分析,自动化学报,2009,35(3):289-298.
Zhang Yong, Gong Dun Wei, Zhang Wan Qiu.A simplex method based improved particle swarm optimization and analysis on its global convergence[J].Acta Automatica Sinica,2009,35(3):289-298.
[6] Meng A, Li Z, Yin H, et al. Accelerating particle swarm optimization using crisscross search[J].Information Sciences, 2016, 329: 52-72.
[7] Sun J, Feng B, Xu W B. Particle swarm optimization with particles having quantum behavior[C]//IEEE Proceedings of Congress on Evolutionary Computation, Portland, USA. 2004: 325-331.
[8] Sun J, Xu W B, Feng B, A global search strategy of quantum-behaved particle swarm optimization[C]//IEEE Proceedings of Cybernetics and Intelligent Systems, Singapore.2004: 111-116.
[9] Liu F, Zhou Z. An improved QPSO algorithm and its application in the high-dimensional complex problems[J].Chemometrics and Intelligent Laboratory Systems, 2014, 132: 82-90.
[10] Nelder J A, Mead R. A simplex method for function minimization[J].The computer journal, 1965, 7(4): 308-313.
[11] Shi Y, Eberhart R C. A modified particle swarm optimizer[C]//Proceedings of the IEEE Congress on Evolutionary Computation, Piscataway, N J. 1998: 69-73.
[12] Ma G, Zhou W, Chang X L. A novel particle swarm global optimization algorithm based on particle migration[J].Applied Mathematics and Computation, 2012, 218(11): 6620-6626.
[13] 孙俊.量子行为粒子群优化算法研究[D].无锡:江南大学,2009.
Sun Jun. Research on quantum behaved particle swarm optimization algorithm[D].Wuxi: Jiangnan University,2009.
[14] Derrac J, García S, Molina D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J].Swarm and Evolutionary Computation, 2011, 1(1): 3-18.
[15] Liang J J, Qu B Y, Suganthan P N, et al. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization[R].Singapore: Nanyang Technological University,2013.
[16] Pant M, Thangaraj R, Abraham A. A new quantum behaved particle swarm optimization[C]//The 10th annual conference on Genetic and evolutionary computation. Atlanta, GA, USA, 2008: 87-94.
[1] 李金, 张纪会, 高学柳, 张保华. 基于分工和模糊控制的粒子群算法[J]. 复杂系统与复杂性科学, 2024, 21(1): 109-118.
[2] 田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.
[3] 李阳, 田兴华, 张纪会. 基于改进BA网络的遗传算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 69-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed