Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (2): 105-110    DOI: 10.13306/j.1672-3813.2016.02.013
  本期目录 | 过刊浏览 | 高级检索 |
含时延的多智能体系统的多静态领导者包容控制
李勃1, 陈增强1,2, 刘忠信1, 张青2
1.南开大学计算机与控制工程学院,天津 300071;
2.中国民航大学理学院,天津 300300
Containment Control for Multi-Agent System with Multiple Stationary Leaders and Time-Delays
LI Bo1, CHEN Zengqiang1,2, LIU Zhongxin1, ZHANG Qing2
1. College of Computer & Control Engineering, Nankai University, Tianjin 300071, China;
2.College of Science, Civil Aviation University of China, Tianjin 300300, China
全文: PDF(778 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 对基于有向固定拓扑的多静态领导者的多智能体系统的包容控制问题进行研究。在系统中智能体之间信息传递存在固定通信时延的情况下,应用拉普拉斯变换技术分别研究一阶和二阶连续时间多智能体系统,通过对系统传递函数的稳定性分析而求取系统状态稳定条件,并应用终值定理,最终得到了保证系统实现包容控制的时延限制条件,最后用仿真验证了该结论的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李勃
陈增强
刘忠信
张青
关键词 多智能体系统包容控制多静态领导者通信时延终值定理    
Abstract:This paper is concerned with distributed containment control of multi-agent system with multiple stationary leaders under fixed directed network topologies. Under the assumption that communication time-delays in all channels are equal, the Laplace transform is used to study the first-order and second-order multi-agent delayed system with continuous-time. Some sufficient conditions are obtained to ensure the containment of the multi-agent system by stability analysis for transfer function to get conditions and applying final value theorem. Finally,computer simulations show the effectiveness of the conclusion.
Key wordsmulti-agent systems    containment control    multiple stationary leaders    communication time-delays    final value theorem
收稿日期: 2014-11-20      出版日期: 2025-02-25
ZTFLH:  TP273  
基金资助:国家自然科学基金(61174094);天津自然科学基金(14JCYBJC18700,13JCYBJC17400)
作者简介: 李勃(1972-),男,山东龙口人,博士研究生,主要研究方向为多智能体系统的包容控制。
引用本文:   
李勃, 陈增强, 刘忠信, 张青. 含时延的多智能体系统的多静态领导者包容控制[J]. 复杂系统与复杂性科学, 2016, 13(2): 105-110.
LI Bo, CHEN Zengqiang, LIU Zhongxin, ZHANG Qing. Containment Control for Multi-Agent System with Multiple Stationary Leaders and Time-Delays[J]. Complex Systems and Complexity Science, 2016, 13(2): 105-110.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.02.013      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I2/105
[1] Reynolds C W.Flocks,herds and schools a distributed behavioral model[J].Computer Graphics,1987,21(4):25-34.
[2] Vicsek T, Czirok A, Ben Jacob E, et al. Novel type ofphase transition in a system of self-driven particles[J].Physical Review Letters,1995,75(6):1226-1229.
[3] Jadbabaie A, Lin J, Morse A S. Coordination of groupsof mobile agents using nearest neighbor rules[J].IEEETranson Automatic Control,2003,48(6):988-1001.
[4] Moreau L.Stability of multi-agent systems with timedependent communication links[J].IEEE Trans onAutomatic Control,2005,50(2):169-182.
[5] Ren W, Beard R W.Consensus seeking in multi-agentsystems under dynamically changing interactiontopologies[J].IEEE Trans on Automatic Control,2005,50(5):655-661.
[6] JiM,Ferrari-Trecate G, Egerstedt M, et al. Containment control in mobile networks[J].IEEE Transactions onAutomatic Control,2008,53(8):1972-1975.
[7] 于镝,白丽娟,李铖.非线性多智能体网络的分布式包容控制[J].复杂系统与复杂性科学,2013,10(2):63-68.
Yu Di, Bai LiJuan, Li Cheng. Distributed containment control of nonlinear multi-agent networks[J].Complex Systems and Complexity Science,2013,10(2):63-68.
[8] Dong X W,Meng F L,Shi Z Y,et al. Output containment control for swarm systems with general lineardynamics: a dynamic output feedback approach[J].Systems & Control Letters,2014(71):31-37.
[9] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays[J].IEEE Transaction on Automatic Control,2004,49(9):1520-1533.
[10] Yu W W,Chen G R,Cao M. Some necessary and sufficient conditions for second-order consensus inmulti-agent dynamical systems[J].Automatica,2010,46(6):1089-1095.
[11] 杨洪勇,张嗣瀛. 离散时间系统的多智能体的一致性[J].控制与决策,2009,24(3):413-416.
Yang Hongyong, Zhang SiYing.Consensus of multi-agent system with discrete-time[J].Control and Decision, 2009,24(3):413-416.
[12] Xia C Y, Wang Z, Sanz J, et al.Effects of delayed recovery and nonuniform transmission on the spreading of diseases in complex networks[J].Physica A, 2013(392): 1577-1585.
[13] Wang L, Sun S W, Xia C Y. Finite-time stability of multi-agent system in disturbed environment[J].Nonlinear Dynamics,2012,(67):2009-2016.
[14] Xia C Y, Wang L, Sun S W,et al.An SIR model with infection delay and propagation vector in complex networks[J].Nonlinear Dynamics,2012(69): 927-934.
[15] Liu K E, Xie G M, Wang L.Containment control for second-order multi-agent systems withtime-varying delays[J].Systems & Control Letters,2014(67):24-31.
[16] Cao Y C,Ren W,Egerstedt M.Distributed containment control with multiple stationary or dynamic leaders infixed and switching directed networks[J].Automatica, 2012, 48(8): 1586-1597.
[17] Rockafellar R T. Convex Analysis[M].New Jersey:Princeton University Press,1972.
[18] Ren W, Cao Y C.Distributed Coordination of Multi-agent Networks[M].London:Springer, 2011.
[19] Liu H, Xie G M, Wang L. Necessary and sufficient conditions for containmentcontrol of networked multi-agent systems[J].Automatica,2012,48(7):1415-1422.
[20] 胡寿松.自动控制原理[M].5版.北京:科学出版社,2006:636-637.
[1] 纪亚楠, 纪志坚. 无向拓扑下多智能体系统目标能控的图论条件[J]. 复杂系统与复杂性科学, 2024, 21(4): 13-20.
[2] 肖朋朋, 纪志坚, 刘允刚, 林崇. InSCC拓扑结构的能控性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 47-55.
[3] 杜向阳, 李伟勋, 陈增强, 张利民. 非线性耦合多智能体系统组编队跟踪控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 72-79.
[4] 冯万典, 彭世国, 曾梓贤. 脉冲控制下半马尔可夫随机MAS的均方一致性[J]. 复杂系统与复杂性科学, 2022, 19(3): 81-87.
[5] 张志伟, 纪志坚. 有向路径下的一类多智能体系统的能控性分析[J]. 复杂系统与复杂性科学, 2022, 19(2): 63-70.
[6] 国俊豪, 纪志坚. 基于NE结果的多智能体系统模型及其能控性[J]. 复杂系统与复杂性科学, 2021, 18(4): 50-57.
[7] 王潇, 纪志坚. 基于MAS的合作—竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
[8] 李英桢, 纪志坚, 刘帅, 杨仪龙. 含时滞多智能体系统的边动态二分一致性[J]. 复杂系统与复杂性科学, 2019, 16(4): 19-30.
[9] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
[10] 仉伟, 纪志坚, 渠继军. 基于领导者对称的多智能体系统可控性研究[J]. 复杂系统与复杂性科学, 2019, 16(2): 52-59.
[11] 王品, 姚佩阳. 具有不同输入时延的二阶多智能体系统一致性[J]. 复杂系统与复杂性科学, 2016, 13(4): 102-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed