Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (2): 65-74    DOI: 10.13306/j.1672-3813.2017.02.010
  本期目录 | 过刊浏览 | 高级检索 |
双渠道回收闭环供应链演化博弈复杂性与控制
于淼, 马军海
天津大学管理与经济学部,天津 300072
Complexity of Evolutionary Gameand Control in a Closed-Loop Supply Chain with Dual-Channel Recycling
YU Miao, MA Junhai
College of Management and Economics, Tianjin University, Tianjin 300072
全文: PDF(1536 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 构建了一个由制造商与零售商同时回收废旧电子产品的闭环供应链模型,拟分析新产品与再制品差别定价销售行为的市场运营模式。运用博弈论、混沌动力学和复杂动力学理论,结合数值实验计算进行理论验证和现实仿真方法。研究表明,制造商和零售商的决策变量调节速度过快时,均会使得系统陷入一种混沌无序的状态。鉴于混沌系统的危害,采用调整参数可以对混沌进行了有效的控制,研究具有很好的理论和实际应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于淼
马军海
关键词 闭环供应链混合回收渠道演化博弈混沌    
Abstract:This paper builds models of one manufacturer and one retailer recycle the waste products at the same time, to analyze market operation system when different prices settings between new products and remanufactured products. Using game theory, chaotic dynamics theory and complexity dynamics theory, we perform the theory verification and reality simulation through numerical calculation.Results show that a fast speed of price adjustment of the manufacturer or the retailer will both lead the system into chaos via period-doubling bifurcations. Focusing on the harmful effects of chaotic system, adjustment parameter can be used to control the chaos efficiently. This research whose results have a strong reference value to practical problems, has a great value both of theory and application.
Key wordsclosed-loop supply chain    mixed recycling channels    evolutionary game    chaos
收稿日期: 2016-05-10      出版日期: 2025-02-25
ZTFLH:  O29  
基金资助:国家自然科学基金(71571131);教育部博士点基金(20130032110073)
作者简介: 于淼(1992-),女,黑龙江哈尔滨人,硕士研究生,主要研究方向为闭环供应链定价。
引用本文:   
于淼, 马军海. 双渠道回收闭环供应链演化博弈复杂性与控制[J]. 复杂系统与复杂性科学, 2017, 14(2): 65-74.
YU Miao, MA Junhai. Complexity of Evolutionary Gameand Control in a Closed-Loop Supply Chain with Dual-Channel Recycling[J]. Complex Systems and Complexity Science, 2017, 14(2): 65-74.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.02.010      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I2/65
[1] Liang Y J,Pokharel S, Lim G H.Pricing used products for remanufacturing[J].European Journal of Operational Research, 2009(193): 390-395.
[2] Chen J M, Chang C I. The co-opetitive strategy of a closed-loop supplychain with remanufacturing[J].Transportation Research Part E, 2012(48): 387-400.
[3] Maiti T, Giri B C. A closed loop supply chain under retail price and product quality dependent demand[J].Journal of Manufacturing Systems, 2015, 37: 624-637.
[4] He Y. Acquisition pricing and remanufacturing decisions in a closed-loop supply chain[J].International Journal of Production Economics, 2015, 163: 48-60.
[5] 肖迪, 黄培清.基于产品时间价值的闭环供应链库存策略研究[J].管理工程学报, 2008, 22(4): 146-148.
Xiao Di, Huang Peiqing. A study on inventory policy of closed loop supply chain based on time value of products[J].Journal of Industrial Engineering, 2008, 22(4): 146-148.
[6] 聂佳佳.零售商信息分享对闭环供应链回收模式的影响[J].管理科学学报, 2013, 16(5): 69-82.
Nie Jiajia. Effects of retailer information sharing on collecting modes of closed-loop supply chain[J].Journal of Management Sciences in China, 2013, 16(5): 69-82.
[7] Savaskan R C, Van Wassenhove L N.Reverse channel design:the case of competing retailers[J].Management Science, 2006,52 (1):1-14.
[8] Zu J M, Zhang N, Dai Y, et al. Managing channel profits of different cooperative models in closed-loop supply chains[J].Omega, 2016, 59: 251-262.
[9] Huang M, Song M, Lee L H, et al. Analysis for strategy of closed-loop supply chain with dual recycling channel[J].International Journal of Production Economics, 2013, 144(2): 510-520.
[10] 肖雪珣, 陈晓荣.基于博弈论的闭环路供应链回收策略[J].科学技术与工程, 2011,11(6) :1277-1283.
Xiao Xuexun, Chen Xiaorong. Study on closedloop supply chain tack-back strategy based on game theory[J].Science Technology and Engineering, 2011,11(6) :1277-1283.
[11] 徐兵.双营销渠道闭环供应链决策模型与协调[J].西南交通大学学报, 2012,47(6):042-1046.
Xu Bing, Wu Ming. Product remanufacturing and pricing decisions and supply chain coordination of closed-loop supply chain with dual sale channels[J].Journal of Southwest Jiaotong University, 2012,47(6):042-1046.
[12] Bischi G I, Kopel M. Equilibrium selection in a nonlinear duopoly game with adaptive expectations[J].Journal of Economic Behavior & Organization, 2001, 46(1): 73-100.
[13] Akio M, Yasuo N. Statistical dynamics in a chaotic cournot model with complementary goods[J].Journal of Economic Behavior & Organization, 2006, 61: 769-783.
[14] Elsadany A A. Dynamics of a delayed duopoly game with bounded rationality[J].Mathematical and Computer Modeling, 2010, 52(9/10): 1479-1489.
[15] 郭悦红, 马军海, 王冠辉.回收再制造系统的重复博弈模型及复杂性分析[J].工业工程, 2011, 14(5): 66-70.
GuoYuehong, Ma Junhai, Wang Guanhui. Modeling and analysis of recycling and remanufacturing systems by using repeated game model[J].Industrial Engineering Journal, 2011, 14(5): 66-70.
[16] 谢磊, 马军海. 中国废旧家电回收市场稳定性及其应用研究[J].复杂系统与复杂性科学, 2015, 12(3): 96-109.
Xie Lei, Ma Junhai. The stability and application analysis on the home appliance recycling market in China[J].Complex Systems and Complexity Science, 2015, 12(3): 96-109.
[1] 张玉玺, 孙小淇. 概周期驱动二维正弦系统的奇异非混沌吸引子特性分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 53-57.
[2] 许海娟, 叶春明, 李芳. 碳减排成本分担下的供应链运营决策分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 81-90.
[3] 彭伟华, 侯仁勇. 网络平台就业治理的三方演化博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(4): 99-106.
[4] 王贺元, 陈相霆. 强迫Lorenz模型混沌行为的力学机理分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 42-47.
[5] 戴守晨, 曲大义, 孟奕名, 杨玉凤, 王其坤. 交通流频变路段智能网联车辆换道演化博弈机制[J]. 复杂系统与复杂性科学, 2024, 21(3): 128-135.
[6] 王越, 安新磊, 施倩倩, 刘思洋. 基于一个复混沌系统的图像加密算法[J]. 复杂系统与复杂性科学, 2024, 21(3): 77-84.
[7] 刘思洋, 安新磊, 施倩倩, 王越. 一类多涡卷Chua系统及其在图像加密中的应用[J]. 复杂系统与复杂性科学, 2024, 21(3): 85-92.
[8] 刘举胜, 李超然, 朱洁训, 邱志萍, 王梓懿. 公共体育场馆协同治理研究:基于演化博弈分析框架[J]. 复杂系统与复杂性科学, 2024, 21(3): 108-119.
[9] 韩普, 叶东宇, 顾亮. 奖惩机制下社区垃圾分类行为演化博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 120-127.
[10] 赵奕凡, 沈云柱, 杜传斌. 一类概周期驱动分段光滑系统的奇异非混沌吸引子特性分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 75-79.
[11] 杨国忠, 周午阳. 基于供应链视角的企业协同生态创新演化博弈[J]. 复杂系统与复杂性科学, 2024, 21(2): 120-128.
[12] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[13] 王建华, 郝婷婷, 林超英, 朱敏. 政府监管机制下港口企业的社会责任履行研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 147-153.
[14] 谢振雨, 万安霞. 药品安全治理演化博弈及策略研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 129-136.
[15] 高正中, 杜翔. 含多项式取绝对值函数的混沌系统分析与应用[J]. 复杂系统与复杂性科学, 2024, 21(1): 74-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed