Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (4): 1-6    DOI: 10.13306/j.1672-3813.2022.04.001
  本期目录 | 过刊浏览 | 高级检索 |
基于复杂网络理论的电力网络抗毁性分析
郭明健, 高岩
上海理工大学系统科学系,上海 200093
Invulnerability Analysis of Power Network Based on Complex Network
GUO Mingjian, GAO Yan
Department of Systems Science, University of Shanghai for Science and Technology, Shanghai 200093, China
全文: PDF(1464 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 抗毁性分析是电网安全研究的核心内容之一,因传统分析方法无法有效分析故障产生的过程,对研究抗毁性存在局限性,基于复杂网络理论研究电力网络的抗毁性并以上海市崇明区为例实证分析。对电力网络随机攻击和蓄意攻击,得出攻击后网络效率和最大连通子图数量变化,并提出网络效率变化率作为评估抗毁性的参数。根据仿真结果,提出一种基于实时接近中心性优先攻击策略的分段式保护方案,提高电力网络的抗毁性,以保证电网安全。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭明健
高岩
关键词 电力系统抗毁性复杂网络网络效率接近中心性    
Abstract:Invulnerability analysis is one of the core contents of power grid security research. Traditional analysis methods cannot effectively analyze the process of failure generation, and have limitations in the research of invulnerability analysis. This paper studies the invulnerability analysis of power networks based on complex network theory, and conducts an empirical analysis using Chongming District of Shanghai as an example. For random attacks and selective attacks on the power network, the changes in the network efficiency and the maximum number of connected subgraphs after the attack are obtained, and the network efficiency change rate is proposed as a parameter to evaluate the invulnerability. According to the simulation results, a segmented protection scheme based on real-time centrality closeness priority attack strategy is proposed to improve the invulnerability of the power network and ensure the safety of the power grid.
Key wordspower systems    invulnerability    complex network    network connectivity efficiency    closeness centrality
收稿日期: 2021-09-05      出版日期: 2023-01-09
ZTFLH:  TM711  
基金资助:国家自然科学基金(7271130)
通讯作者: 高岩(1962),男,黑龙江五常人,博士,教授,主要研究方向为电力系统需求侧管理,系统分析与优化等。   
作者简介: 郭明健(1994),男,江苏镇江人,硕士,主要研究方向为电力系统,复杂网络。
引用本文:   
郭明健, 高岩. 基于复杂网络理论的电力网络抗毁性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 1-6.
GUO Mingjian, GAO Yan. Invulnerability Analysis of Power Network Based on Complex Network. Complex Systems and Complexity Science, 2022, 19(4): 1-6.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.04.001      或      https://fzkx.qdu.edu.cn/CN/Y2022/V19/I4/1
[1] 陈超洋, 周勇, 池明, 等. 基于复杂网络理论的大电网脆弱性研究综述[J]. 控制与决策, 2022, 37(4):782798.
CHEN C Y, ZHOU Y, CHI M, et al. Review of large power grid vulnerability based on complex network theory[J]. Control and Decision, 2022, 37(4):782798.
[2] 徐飞阳, 薛安成, 常乃超, 等. 电力系统自动发电控制网络攻击与防御研究现状与展望[J]. 电力系统自动化, 2021, 45(3):314.
XU F Y, XUE A C, CHANG N C, et al. Research status and prospect of cyber attack and defense on automatic generation control in power system[J]. Automation of Electric, 2021, 45(3):314.
[3] 陈思谕, 邹艳丽, 王瑞瑞, 等. 电网输电线路耦合强度分配策略研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 4553.
CHEN S Y, ZOU Y L, WANG R R, et al. On the coupling strength distribution strategy of power transmission lines [J]. Complex Systems and Complexity Science, 2018, 15(2):4553.
[4] YUAN G, GAO Y, YE B. Optimal dispatching strategy and real-time pricing for multi-regional integrated energy systems based on demand response[J]. Renewable Energy, 2021, 179(7): 14241446.
[5] LU Z M, GAO Y, XU C. Evaluation of energy management system for regional integrated energy system under interval type-2 hesitant fuzzy environment[J]. Energy, 2021, 222: 119860.
[6] TAN Y H, ZHANG J, LI X. Importance evaluation of power grid nodes based on complex network theory[J]. Computer Engineering, 2019, 45(11): 281286.
[7] HE M, ZOU Y L, LIANG M Y, et al. Critical node identification of a power grid based on multi-attribute decision[J]. Complex Systems and Complexity Science, 2020, 17(3): 2737.
[8] HAO Y, JIA L, WANG Y. Robustness of weighted networks with the harmonic closeness against cascading failures[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 541: 123373.
[9] BROIDO A D, CLAUSET A. Scale-free networks are rare[J]. Nature Communications, 2019, 10(1): 110.
[10] YAO Y, JIANG L, XIAO H, et al. Restart-up performance of a CFB boiler after a sudden power failure accident[J]. Journal of Thermal Science, 2022, 31(3):830839.
[11] ZHAO Z. Research on invulnerability of wireless sensor networks based on complex network topology structure [J]. International Journal of Online Engineering, 2017, 13(3): 100112.
[12] WEI X, GAO S, HUANG T, et al. Complex network-based cascading faults graph for the analysis of transmission network vulnerability[J]. IEEE Transactions on Industrial Informatics, 2018, 15(3): 12651276.
[13] THAMS F, VENZKE A, ERIKSSON R, et al. Efficient database generation for data-driven security assessment of power systems[J]. IEEE Transactions on Power Systems, 2019, 35(1): 3041.
[14] HU W H, RUAN Z H, XIAO X Y, et al. A novel voltage sag state estimation method based on complex network analysis[J]. International Journal of Electrical Power & Energy Systems, 2022, 140: 108119.
[15] 曹永吉, 张恒旭, 施啸寒, 等. 规模化分布式能源参与大电网安全稳定控制的机制初探[J]. 电力系统自动化, 2021, 45(18):18.
CAO Y J, ZHANG H X, SHI X H, et al. Preliminary study on participation mechanism of large-scale distributed energy resource in security and stability control of large power grid[J]. Automation of Electric, 2021, 45(18):18.
[16] 王梓行, 姜大立, 漆磊, 等. 基于冗余度的复杂网络抗毁性及节点重要度评估模型[J]. 复杂系统与复杂性科学, 2020, 17(3):7885.
WANG Z H, JIANG D L, TU L, et al. Complex network invulnerability and node importance evaluation model based on redundancy[J]. Complex Systems and Complexity Science, 2020, 17(3):7885.
[17] 李常刚, 李华瑞, 刘玉田, 等. 大电网动态安全风险智能评估系统[J]. 电力系统自动化, 2019, 43(22):6775.
LI C G, LI H R, LIU Y T, et al. Large power grid dynamic security risk intelligent assessment system[J]. Automation of Electric, 2019, 43(22):6775.
[18] LAI Q, LIU C, SUN K. Vulnerability assessment for voltage stability based on solvability regions of decoupled power flow equations[J]. Applied Energy, 2021, 304: 117738.
[19] GONZALEZ C E, LAINSCSEK C, SEJNOWSKI T J, et al. Assessing observability of chaotic systems using delay differential analysis[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2020, 30(10): 103113.
[20] LEE J, LEE Y, OH S M, et al. Betweenness centrality of teams in social networks[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2021, 31(6): 061108.
[1] 王淑良, 陈辰, 张建华, 栾声扬. 基于复杂网络的关联公共交通系统韧性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 47-54.
[2] 肖瑶, 李守伟, 王怡涵. FPGA芯片产业链及知识转移网络特征分析[J]. 复杂系统与复杂性科学, 2022, 19(3): 20-26.
[3] 肖琴, 罗帆. 基于复杂网络的通用航空安全监管演化博弈研究[J]. 复杂系统与复杂性科学, 2022, 19(3): 33-43.
[4] 张健, 宋志刚, 张雨. 基于节点重要性的建筑群火灾蔓延高危建筑的确定方法[J]. 复杂系统与复杂性科学, 2022, 19(3): 66-73.
[5] 吴俊, 邓烨, 王志刚, 谭索怡, 李亚鹏. 复杂网络瓦解问题研究进展与展望[J]. 复杂系统与复杂性科学, 2022, 19(3): 1-13.
[6] 董晓娟, 安海岗, 都沁军, 董志良, 陆刚. 废铜资源全球贸易网络演化特征与响应策略研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 104-110.
[7] 马媛媛, 韩华. 基于有效距离的复杂网络节点影响力度量方法[J]. 复杂系统与复杂性科学, 2022, 19(1): 12-19.
[8] 赵军产, 王少薇, 陆君安, 王敬童. 疫情背景下全球股市网络的抗毁性及预警研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 52-59.
[9] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[10] 张芹, 郭进利. 基于复杂网络理论的质量管理分析[J]. 复杂系统与复杂性科学, 2021, 18(4): 43-49.
[11] 蒋培祥, 董志良, 张翠芝, 张亦池. 常规能源国际贸易网络演化特征研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 66-73.
[12] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
[13] 吴慧, 顾晓敏, 赵袁军. 产学研合作创新网络拓扑演化的复杂网络研究[J]. 复杂系统与复杂性科学, 2020, 17(4): 38-47.
[14] 王哲, 李建华, 康东, 冉淏丹. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26.
[15] 何铭, 邹艳丽, 梁明月, 李志慧, 高正. 基于多属性决策的电力网络关键节点识别[J]. 复杂系统与复杂性科学, 2020, 17(3): 27-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed