Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (3): 9-16    DOI: 10.13306/j.1672-3813.2024.03.002
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于社团结构的抑制校园新冠传播研究
高天, 许小可
大连民族大学信息与通信工程学院,辽宁 大连 116600
Suppression of COVID-19 Campus Spreading Based on Community Structures
GAO Tian, XU Xiaoke
College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China
全文: PDF(3117 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 校园是一个特殊的人群密集场所,如果校园内出现新冠病例往往有大面积传染的风险,还可能成为家庭传播的重要来源。为此提出了基于班级减少接触策略,用于校园疫情防控,该策略可理解为依据班级结构对校园人群进行社团划分后,减少社团间或社团内的人际接触。研究结果表明,在减少同等接触人数或接触时长的前提下,基于社团结构的有差别减少接触策略可取得更好的疫情防控效果,使得校园人群的感染峰值和致病总人数进一步降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高天
许小可
关键词 COVID-19疾病传播社团结构SEIR模型校园疫情    
Abstract:The campus is a special crowded place. If a patient with covid-19 appears on campus, there is often the risk of large-scale infection, and it may also become an important source of family transmission. This paper proposes a class-based contact reduction strategy for campus epidemic prevention and control. This strategy can be understood as reducing human contact between and within communities after the campus population is divided into groups according to the class structure. The research results show that, on the premise of reducing the same number of contacts or contact time, differential contact reduction strategies based on community structure can achieve better epidemic prevention and control effects, making the infection peak and the total number of disease-causing population fell further on campus.
Key wordsCOVID-19    disease spread    community structure    SEIR model    campus outbreak
收稿日期: 2023-01-10      出版日期: 2024-11-07
ZTFLH:  TP391  
  R183.3  
基金资助:国家自然科学基金(62173065)
通讯作者: 许小可(1979-),男,辽宁庄河人,博士,教授,主要研究方向为网络科学和社交网络大数据。   
作者简介: 高天(1999-),男,河南周口人,硕士研究生,主要研究方向为复杂网络上信息与疾病传播。
引用本文:   
高天, 许小可. 基于社团结构的抑制校园新冠传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 9-16.
GAO Tian, XU Xiaoke. Suppression of COVID-19 Campus Spreading Based on Community Structures[J]. Complex Systems and Complexity Science, 2024, 21(3): 9-16.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.03.002      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I3/9
[1] HEMMER C J, LÖBERMANN M, REISINGER E C. COVID-19: epidemiologie und mutationen[J]. Der Radiologe, 2021, 61(10): 880-887.
[2] 温竞华, 宋晨. 当前疫情形势如何?校园防疫如何做?[N]. 新华每日电讯, 2022-05-07(4).
WEN J, SONG C. What is the current situation of the epidemic? How to do campus epidemic prevention?[N]. Xinhua Daily Telegraph, 2022-05-07(4).
[3] 陈晶. 落细防控举措,抓好社区和校园疫情防控[N]. 人民政协报, 2022-05-11(5).
CHEN J. Implement detailed prevention and control measures, and focus on community and campus epidemic prevention and control[N]. CPPCC DAILY, 2022-05-11(5).
[4] 郭丽菲. 太原学院疫情防控不松懈,筑牢校园“安全网”[N]. 山西青年报, 2022-04-21(8).
GUO L. Taiyuan University remains vigilant in epidemic prevention and control, building a strong campus "safety net"[N]. Shanxi Youth Daily, 2022-04-21(8).
[5] HABIB H. Has Sweden’s controversial covid-19 strategy been successful?[J]. Bmj, 2020, 369: m2376.
[6] 贝壳, 陆默. “群体免疫” 策略: 科学还是赌博[J]. 世界科学, 2020 (5): 10-12.
BEI K, LU M. "Group immunity" strategy: science or gambling[J]. World Science, 2020(5): 10-12.
[7] FERRETTI L, WYMANT C, KENDALL M, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing[J]. Science, 2020, 368(6491): eabb6936.
[8] BAKER A, BIAZZO I, BRAUNSTEIN A, et al. Epidemic mitigation by statistical inference from contact tracing data[J]. Proceedings of the National Academy of Sciences, 2021, 118(32): e2106548118.
[9] SOLDANO G J, FRAIRE J A, FINOCHIETTO J M, et al. COVID-19 mitigation by digital contact tracing and contact prevention (app-based social exposure warnings)[J]. Scientific Reports, 2021, 11(1): 1-8.
[10] MATRAJT L, LEUNG T. Evaluating the effectiveness of social distancing interventions to delay or flatten the epidemic curve of coronavirus disease[J]. Emerging Infectious Diseases, 2020, 26(8): 1740-1748.
[11] SILVA P C L, BATISTA P V C, LIMA H S, et al. COVID-ABS: an agent-based model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions[J]. Chaos, Solitons & Fractals, 2020, 139: 110088.
[12] NGONGHALA C N, IBOI E, EIKENBERRY S, et al. Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus[J]. Mathematical Biosciences, 2020, 325: 108364.
[13] ULLAH S, KHAN M A. Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study[J]. Chaos, Solitons & Fractals, 2020, 139: 110075.
[14] EICHENBAUM M S, REBELO S, TRABANDT M. The macroeconomics of epidemics[J]. The Review of Financial Studies, 2021, 34(11): 5149-5187.
[15] SUN J, HAO Y. Hierarchicalsemantic community detection in information networks: a complete information graph approach[J]. Tehnicˇki Vjesnik, 2019, 26(6): 1700-1706.
[16] 张长伦, 宁楠, 金占勇. 基于双重网络社团结构的隐私信息传播模型[J]. 信息技术, 2018(9): 38-43.
ZHANG C, NING N, JIN Z. Privacy information spreading model based on community structure on dual netword[J]. Information Technology, 2018(9): 38-43.
[17] MATRAJT L, LEUNG T. Evaluating the effectiveness of social distancing interventions to delay or flatten the epidemic curve of coronavirus disease[J]. Emerging Infectious Diseases, 2020, 26(8): 1740.
[18] SALATHÉ M, JONES J H. Dynamics and control of diseases in networks with community structure[J]. PLoS computational biology, 2010, 6(4): e1000736
[19] ZHANG J, JIN Z. Epidemic spreading on complex networks with community structure[J]. Applied Mathematics and Computation, 2012, 219(6): 2829-2838.
[20] ZHOU M, MA M, ZHANG Y, et al. EDUM: classroom education measurements via large-scale WiFi networks[C]//Proceedings of the 2016 acm international joint conference on pervasive and ubiquitous computing. Heidelberg Germany, 2016: 316-327.
[21] WANG R, CHEN F,CHEN Z, et al. StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones[C]//Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. Seattle Washington, 2014: 3-14.
[22] STEHLÉ J, VOIRIN N, BARRAT A, et al. High-resolution measurements of face-to-face contact patterns in a primary school[J].PloS One, 2011, 6(8): e23176.
[23] MASTRANDREA R, FOURNET J, BARRAT A. Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys[J].PloS One, 2015, 10(9): e0136497.
[24] BARTHÉLEMY M, BARRAT A, PASTOR-SATORRAS R, et al. Velocity and hierarchical spread of epidemic outbreaks in scale-free networks[J]. PhysicalReview Lletters, 2004, 92(17): 178701.
[25] QIN Y, ZHONG X, JIANG H, et al. An environment aware epidemic spreading model and immune strategy in complex networks[J]. Applied Mathematics and Computation, 2015, 261: 206-215.
[26] SALATHÉ M, JONES J H. Dynamics and control of diseases in networks with community structure[J].PLoS Computational Biology, 2010, 6(4): e1000736.
[27] 范如国, 王奕博, 罗明, 等. 基于SEIR的新冠肺炎传播模型及拐点预测分析[J]. 电子科技大学学报, 2020, 49(3): 369-374.
FAN R, WANG Y, LUO M, et al. SEIR-Based COVID-19 Transmission Model and Inflection Point Prediction Analysis[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3): 369-374.
[28] PEGHIN M, BOUZA E, FABRIS M, et al. Low risk of reinfections and relation with serological response after recovery from the first wave of COVID-19[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2021, 40(12): 2597-2604.
[29] WALLINGA J, TEUNIS P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures[J]. American Journal of Epidemiology,2004,160(6):509-16.
[30] ROCKX B, KUIKEN T, HERFST S, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model[J]. Science, 2020, 368(6494): 1012-1015.
[31] ZHAO S, LIN Q, RAN J, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak[J]. InternationalJournal of Infectious Diseases, 2020, 92: 214-217.
[32] SANCHE S, LIN Y T, XU C, et al. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2[J]. Emerging Infectious Diseases, 2020, 26(7): 1470-1477.
[33] GUAN W, NI Z, HU Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J]. New EnglandJournal of Medicine, 2020, 382(18): 1708-1720.
[34] WANG D, HU B, HU C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. Jama, 2020, 323(11): 1061-1069.
[1] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[2] 张铭娜, 肖婧, 许小可. 展示网络重叠社团结构的可视化布局算法[J]. 复杂系统与复杂性科学, 2023, 20(4): 10-17.
[3] 朱懋昌, 宾晟, 孙更新. 基于COVID-19传播特性的传染病模型的构建与研究[J]. 复杂系统与复杂性科学, 2023, 20(2): 29-37.
[4] 王宇, 冯育强. 基于Conformable分数阶导数的COVID-19模型及其数值解[J]. 复杂系统与复杂性科学, 2022, 19(3): 27-32.
[5] 李冯, 宾晟, 孙更新. 基于时变参数的SCUIR传播模型的构建与研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 80-86.
[6] 席周慧, 孟德霖, 赵继军. 钻石公主号邮轮上COVID-19传播动态的研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 67-73.
[7] 陆云翔, 肖敏, 陶斌斌, 丁洁, 陈实. 独立非交叉传播的分数阶生物竞争网络Hopf分岔[J]. 复杂系统与复杂性科学, 2022, 19(1): 1-11.
[8] 李稚, 宋敏. 基于“病毒变异”和“环境传人”因素的COVID-19疫情传播动力学研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 1-8.
[9] 赵子鸣, 勾文沙, 高晓惠, 陈清华. COVID-19疫情防控需要社区监测及接触者追踪并重[J]. 复杂系统与复杂性科学, 2020, 17(4): 1-8.
[10] 周建云, 刘真真, 许小可. 参照零模型的实证网络传播影响因素分析[J]. 复杂系统与复杂性科学, 2019, 16(3): 40-47.
[11] 张姣, 刘三阳, 白艺光. 基于社团结构的组合信息重连策略[J]. 复杂系统与复杂性科学, 2019, 16(2): 1-8.
[12] 徐兵, 赵亚伟, 徐杨远翔. 基于关联群演化相似度的社团追踪算法[J]. 复杂系统与复杂性科学, 2019, 16(1): 14-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed