Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (4): 139-144    DOI: 10.13306/j.1672-3813.2025.04.018
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
接种行为影响下疾病暴发的早期预警信号研究
王雪晴, 周芮, 赵继军
青岛大学自动化学院,山东 青岛 266071
Study of Early Warning Signals for Disease Re-emergence Considering Population Behavior
WANG Xueqing, ZHOU Rui, ZHAO Jijun
Department of Automation, Qingdao University, Qingdao 266071, China
全文: PDF(1303 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为探究早期预警信号(EWS)在预测疾病重新暴发时的表现,对接种行为影响下的传染病动态系统进行研究,建立考虑接种行为的传染病模型,并使用模型仿真数据计算不同统计指标作为EWS,包括自相关系数、方差、均值、增量方差、偏度和残差,再通过ROC曲线评估这些指标的性能。自相关系数、方差、均值和增量方差具有较好的性能表现。研究结果证明了EWS在检测传染病系统转变时的有效性,并对传染病暴发的早期预警信号研究具有一定的意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王雪晴
周芮
赵继军
关键词 早期预警信号传染病重新暴发人群接种行为    
Abstract:This study aimed to explore the performance of Early Warning Signals (EWS) in predicting the re-emergence of infectious diseases under the influence of vaccination behavior in dynamic systems. First, we established an infectious disease model considering population behavior. Then, we used the model simulation data to calculate different statistical indicators, including mean, variance, autocorrelation coefficient, incremental variance, skewness, and residuals, which will be used as EWS. Finally, we used the Receiver Operating Characteristic curves(ROC)to evaluate the performance of these indicators. Autocorrelation coefficient, variance, mean, and incremental variance demonstrated favorable performance. The results demonstrate the effectiveness of EWS in detecting the transitions of infectious disease systems and hold particular significance in the study of early warning signals for disease outbreaks.
Key wordsearly warning signals    infectious diseases    re-emergence    population vaccination behavior
收稿日期: 2023-10-31      出版日期: 2025-12-10
ZTFLH:  R183  
基金资助:山东自然科学基金(ZR2018MH037)
通讯作者: 赵继军(1966),女,山东青岛人,博士,教授,主要研究方向为传染病动态传播。   
作者简介: 王雪晴(1997),女,河北秦皇岛人,硕士研究生,主要研究方向为流行病学动态特性。
引用本文:   
王雪晴, 周芮, 赵继军. 接种行为影响下疾病暴发的早期预警信号研究[J]. 复杂系统与复杂性科学, 2025, 22(4): 139-144.
WANG Xueqing, ZHOU Rui, ZHAO Jijun. Study of Early Warning Signals for Disease Re-emergence Considering Population Behavior[J]. Complex Systems and Complexity Science, 2025, 22(4): 139-144.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.04.018      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I4/139
[1] 周宇辉. 我国传染病流行现状与防控体系建设研究[J]. 中国卫生政策研究, 2023, 16(4): 7478.
ZHOU Y H. A study on the epidemic status and prevention and control system of infectious diseases in China[J]. Chinese Journal of Health Policy, 2023, 16(4): 7478.
[2] 丰俊, 张丽, 夏志贵, 等. 中国消除疟疾: 重要里程碑意义及消除后的挑战[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 421428.
FENG J, ZHANG L, XIA Z G, et al. Malaria elimination in China: an eminent milestone in the anti-malaria campaign and challenges in the post-elimination stage[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2021, 39(4): 421428.
[3] HERSHEY J C, ASCH D A, THUMASATHIT T, et al. The roles of altruism, free riding, and bandwagoning in vaccination decisions[J]. Organizational Behavior & Human Decision Processes, 1994, 59(2): 177187.
[4] GANGAROSA E J, GALAZKA A M, WOLFE C R, et al. Impact of anti-vaccine movements on pertussis control: the untold story[J]. Lancet, 1998,351:356361.
[5] GOLDSTEIN E, WORBY C J, LIPSITCH M. On the role of different age groups and pertussis vaccines during the 2012 outbreak in wisconsin[J]. Open Forum Infectious Diseases,2018,5(5): ofy082.
[6] SOUTHHALL E, BRETT T S, TILDESLEY M J,et al. Early warning signals of infectious disease transitions: a review[J]. Journal of the Royal Society Interface,2021,18(182): 20210555
[7] ISMAIL M S, NOORANI M S M, ISMAIL M, et al. Early warning signals of financial crises using persistent homology[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 586:126459.
[8] 吴浩, 颜鹏程, 侯威, 等. 近百年及未来百年PDO位相年代际转变检测及其早期预警信号研究[J]. 大气科学, 2022, 46(2): 225236.
WU H, YAN P C, HOU W, et al. Detection of decadal phase transition and early warning signals of PDO in recent and next 100 years[J]. Chinese Journal of Atmospheric Science, 2022, 46(2): 225236.
[9] 张玲, 高洁, 靳佩轩. 流感大爆发的多重早期预警信号[J]. 生物数学学报,2015,30(2):299304.
ZHANG L, GAO J, JIN P X. Multiple early warning signals for outbreak of influenza pandemic[J]. Journal of Biomathematics, 2015, 30(2): 299304.
[10] SCHEFFER M, BASCOMPTE J, BROCK W A, et al. Early warning signals for critical transitions[J]. Nature, 2009, 461: 5359.
[11] O′DEA E B, DRAKE J M. Disentangling reporting and disease transmission[J]. Theoretical Ecology, 2019, 12: 8998.
[12] BRETT T S, DRAKE J M, ROHANI P. Anticipating the emergence of infectious diseases[J]. Journal of the Royal Society, Interface,2017,14(132): 20170115.
[13] O′REGAN S M, O′DEA E B, ROHANI P. Transient indicators of tipping points in infectious diseases[J]. Journal of the Royal Society, Interface, 2020, 17(170): 20200094.
[14] TREDENNICK A T, O′DEA E B, FERRARI M J, et al. Anticipating infectious disease re-emergence and elimination: a test of early warning signals using empirically based models[J]. Journal of the Royal Society Interface, 2022, 19(193): 20220123.
[15] BAUCH C T, BHATTACHARYYA S. Evolutionary game theory and social learning can determine how vaccine scares unfold[J]. PLoS Computational Biology,2012,8(4):e1002452.
[16] PHILLIPS B, ANAND M, BAUCH C T. Spatial early warning signals of social and epidemiological tipping points in a coupled behaviour-disease network[J]. Scientific Reports,2020,10:7611.
[17] PANANOS A D, BURY T M, WANG C,et al. Critical dynamics in population vaccinating behavior[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(52):1376213767.
[18] 山东省统计局. 2022年山东省国民经济和社会发展统计公报[DB/OL].[20231001]. http://tjj.shandong.gov.cn/art/2023/3/2/art_6196_10303466.html
Shandong Provincial Bureau of Statistics. Statisticalbulletin of Shandong province′s national economic and social development in 2022[DB/OL].[20231001]. http://tjj.shandong.gov.cn/art/2023/3/2/art_6196_10303466.html
[19] BOERS N. Early warning signals for Dansgaard-Oeschger events in a high-resolution ice core record[J]. Nature Communications, 2018, 9: 2556.
[1] 刘学娟, 张静怡, 曹辉. 无标度网络下ESG评分对信用风险传染的影响[J]. 复杂系统与复杂性科学, 2025, 22(4): 8-14.
[2] 王红春, 周子祥. 复杂供应链网络中断风险传播趋势建模与仿真[J]. 复杂系统与复杂性科学, 2025, 22(3): 17-24.
[3] 焦然, 许小可. 呼吸道传染病聚集性疫情的传播网络分析[J]. 复杂系统与复杂性科学, 2025, 22(3): 11-16.
[4] 杨忠保, 刘泽山, 潘春燕, 张大林. 修正SEIQRDP传播模型的构建与分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 34-41.
[5] 胡行华, 刘盈月. 具有媒体效应的分数阶SAIQR传染病模型[J]. 复杂系统与复杂性科学, 2024, 21(2): 80-88.
[6] 王宇, 冯育强. 基于Conformable分数阶导数的COVID-19模型及其数值解[J]. 复杂系统与复杂性科学, 2022, 19(3): 27-32.
[7] 石娟, 常丁懿, 郑鹏, 李冠龙, 周嘉尧. 基于SD-SEIR模型的实验室人员不安全行为传播研究[J]. 复杂系统与复杂性科学, 2021, 18(3): 67-74.
[8] 徐云程, 胡华, 孙小军. 三层无标度关联网络协同传播模型阈值研究[J]. 复杂系统与复杂性科学, 2021, 18(3): 1-8.
[9] 崔玉美, 陈姗姗, 傅新楚. 几类传染病模型中基本再生数的计算[J]. 复杂系统与复杂性科学, 2017, 14(4): 14-31.
[10] 王玲娜, 王领弟, 傅新楚. 三部图网络上的媒介传染病动力学[J]. 复杂系统与复杂性科学, 2017, 14(2): 11-18.
[11] 柳文艳, 张玉霞, 蔡世民, 何嘉林, 尚明生. 基于复杂行为响应的传染病爆发问题的研究[J]. 复杂系统与复杂性科学, 2017, 14(1): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed