Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (4): 15-23    DOI: 10.13306/j.1672-3813.2025.04.003
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于自适应的高阶网络鲁棒性分析
余文倩1,2, 马福祥1, 陈阳1,2, 马秀娟1
1.青海师范大学计算机学院,西宁 810016;
2.藏语智能信息处理及应用国家重点实验室,西宁 810008
High-order Networks Robustness Analysis Based on Self-adaptive
YU Wenqian1,2, MA Fuxiang1, CHEN Yang1,2, MA Xiujuan1
1. College of Computer, Qinghai Normal University, Xining 810016, China;
2. The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining 810008, China
全文: PDF(2484 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 考虑节点间的多元耦合关系,结合高阶结构及现实中的负载重分配情况,提出了4种自适应负载重分配策略,并分析了3类合成高阶网络、普通网络(图)以及实证高阶网络的鲁棒性。仿真实验表明,高阶网络的规模与其鲁棒性呈正相关;同时,不同的高阶结构和自适应负载重分配方式对高阶网络的鲁棒性产生了不同的影响。提出的自适应负载重分配方式也适用于普通网络(图)和实证高阶网络。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余文倩
马福祥
陈阳
马秀娟
关键词 高阶网络自适应级联故障负载重分配鲁棒性    
Abstract:This paper considers the multivariate coupling relationship between nodes, combines high-order structures and actual load redistribution situations, proposes four self-adaptive load redistribution strategies, and analyzes the robustness of three types of synthetic higher-order networks, common networks (graphs), and real higher-order networks. Simulation experiments show that the scale of higher-order networks is positively correlated with their robustness. At the same time, different higher-order structures and self-adaptive load redistribution methods have different impacts on the robustness of higher-order networks. In addition, the self-adaptive load redistribution methods proposed in this paper are also applicable to common networks (graphs) and real higher-order networks.
Key wordshigh-order networks    self-adaptive    cascade failure    load redistribution    robustness
收稿日期: 2023-07-11      出版日期: 2025-12-10
ZTFLH:  TP39  
  N949  
基金资助:青海省基础研究计划基金(2019ZJ7012);国家自然科学基金青年科学基金(12201335)
通讯作者: 马秀娟(1977),女,青海西宁人,博士,教授,主要研究方向为复杂网络、超图理论、超网络应用。   
作者简介: 余文倩(1998),女,安徽阜阳人,硕士研究生,主要研究方向为复杂网络、高阶网络理论及应用。
引用本文:   
余文倩, 马福祥, 陈阳, 马秀娟. 基于自适应的高阶网络鲁棒性分析[J]. 复杂系统与复杂性科学, 2025, 22(4): 15-23.
YU Wenqian, MA Fuxiang, CHEN Yang, MA Xiujuan. High-order Networks Robustness Analysis Based on Self-adaptive[J]. Complex Systems and Complexity Science, 2025, 22(4): 15-23.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.04.003      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I4/15
[1] ZHOU D, HU F, WANG S, et al. Power network robustness analysis based on electrical engineering and complex network theory[J].Physica A: Statistical Mechanics and Its Applications, 2021, 564: 125540.
[2] BAGGIO J A, BURNSILVER S B, ARENAS A, et al. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion[J]. Proceedings of the National Academy of Sciences, 2016, 113(48): 1370813713.
[3] MOTTERA E, LAI Y C. Cascade-based attacks on complex networks[J]. Physical Review E, 2002, 66(6): 065102.
[4] WANG S L, LV W Z, ZHANG J H, et al. Method of power network critical nodes identification and robustness enhancement based on a cooperative framework[J]. Reliability Engineering & System Safety, 2021, 207: 107313.
[5] BATTISTON F, CENCETTI G, IACOPO I, et al. Networks beyond pairwise interactions:structure and dynamics[J]. Physics Reports, 2020, 874: 192.
[6] BENSON A R, GLEICH D F, HIGHAM D J. Higher-order network analysis takes off, fueled by classical ideas and new data[DB/OL].[20230315].https://arxiv.org/pdf/2103.05031.
[7] TOPAZ C M, ZIEGELMEIER L, HALVERSON T. Topological data analysis of biological aggregation models[J]. PloS one, 2015, 10(5): e0126383.
[8] MILLÁN A P, TORRES J J, BIANCONI G. Explosive higher-order Kuramoto dynamics on simplicial complexes[J]. Physical Review Letters, 2020, 124(21): 218301.
[9] AGUIAR M, BICK C, DIAS A. Network dynamics with higher-order interactions: coupled cell hypernetworks for identical cells and synchrony[J]. Nonlinearity, 2023, 36(9): 4641.
[10] IACOPINI I, PETRI G, BARRAT A, et al. Simplicial models of social contagion[J]. Nature Communications, 2019, 10(1): 2485.
[11] MATAMALAS J T, GÓMEZ S, ARENAS A. Abrupt phase transition of epidemic spreading in simplicial complexes[J]. Physical Review Research, 2020, 2(1): 012049.
[12] BILLINGS J C W, HU M, LERDA G, et al. Simplex2vec embeddings for community detection in simplicial complexes[DB/OL].[20230315].https://arxiv.org/pdf/1906.09068.
[13] ALVAREZ-RODRIGUEZ U, BATTISTON F, ARRUDA G, et al. Evolutionary dynamics of higher-order interactions in social networks[J]. Nature Human Behaviour, 2021, 5(5): 586595.
[14] MA X J, ZHAO H X, HU F. Cascading failure analysis in hyper-network based on the hypergraph[J]. Acta Physica Sinica, 2016, 65(8): 374383.
[15] BENSON A R, GLEICH D F, LESKOVEC J. Higher-order organization of complex networks[J]. Science, 2016, 353(6295): 163166.
[16] YOUNG J G, PETRI G, PEIXOTO T P. Hypergraph reconstruction from network data[J]. Communications Physics, 2021, 4(1): 135.
[17] PENG H, ZHAO Y, ZHAO D, et al. Robustness of higher-order interdependent networks[J]. Chaos, Solitons and Fractals, 2023,171:113485.
[18] PENG H, ZHAO Y F, ZHAO D D, et al. Robustness of higher-order interdependent networks[J]. Chaos, Solitons & Fractals, 2023, 171: 113485.
[19] 术永昊, 郭进利, 覃世媛. 航空公司网络结构特征研究[J]. 软件导刊, 2023, 22(5): 171176.
SHU Y H, GUO J L, TAN S Y. Research on the characteristics of airline network structure[J]. Software Guide, 2023, 22(5): 171176.
[20] 胡枫, 赵海兴, 何佳倍, 等. 基于超图结构的科研合作网络演化模型[J]. 物理学报, 2013, 62(19): 547554.
HU F, ZHAO H X, HE J B, et al. An evolving model for hypergraph-structure-based scientific collaboration networks[J]. Acta Physica Sinica, 2013, 62(19): 547554.
[21] MAJHI S, PERC M, GHOSH D. Dynamics on higher-order networks: a review[J]. Journal of the Royal Society Interface, 2022, 19(188): 20220043.
[22] BENSON A R, ABEBE R, SCHAUB M T, et al. Simplicial closure and higher-order linkprediction[J]. Proceedings of the National Academy of Sciences, 2018, 115(48): 1122111230.
[23] COURTNEY O T, BIANCONI G. Weighted growing simplicial complexes[J]. Physical Review E, 2017, 95(6): 062301.
[24] BIANCONI G, RAHMEDE C. Network geometry with flavor: from complexity to quantum geometry[J]. Physical Review E, 2016, 93(3): 032315.
[1] 万孟然, 叶春明. 基于双层规划的物流配送中心选址及配送优化[J]. 复杂系统与复杂性科学, 2025, 22(4): 118-124.
[2] 陶昭, 侯忠生. 复杂网络的无模型自适应牵制控制[J]. 复杂系统与复杂性科学, 2025, 22(2): 120-127.
[3] 毛子祥, 侯忠生. 动态事件触发下带有扰动的MASs无模型迭代二分一致控制[J]. 复杂系统与复杂性科学, 2025, 22(1): 138-145.
[4] 胡福年, 杨伟丹, 陈军. 基于关键节点的电力信息物理系统鲁棒性评估[J]. 复杂系统与复杂性科学, 2025, 22(1): 43-49.
[5] 周琴, 徐桂琼. 基于动态级联失效的开发者协作网络鲁棒性研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 33-42.
[6] 孔令仁, 亓庆源. 含参数不确定及时滞的线性系统自适应模型预测控制[J]. 复杂系统与复杂性科学, 2024, 21(3): 136-143.
[7] 张成军, 姚辉, 雷毅, 夏登辉, 李琪, 沈鑫禹, 钱铭, 余文斌. 高低阶耦合网络的鲁棒性研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 17-22.
[8] 周斌, 马福祥, 高淑洁, 马秀娟, 李明杰. 超边内部结构对无标度超网络鲁棒性的影响[J]. 复杂系统与复杂性科学, 2024, 21(3): 1-8.
[9] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[10] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[11] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[12] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[13] 林兆丰, 李树彬, 孔祥科. 地铁建设对公交系统鲁棒性的影响[J]. 复杂系统与复杂性科学, 2023, 20(1): 66-73.
[14] 李军涛, 胡启贤, 刘朋飞, 郭文文. 跨层穿梭车双提升机系统多目标问题优化[J]. 复杂系统与复杂性科学, 2022, 19(4): 80-90.
[15] 卢炯, 许新建. 协同对社会传播的影响[J]. 复杂系统与复杂性科学, 2022, 19(3): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed