Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (4): 13-20    DOI: 10.13306/j.1672-3813.2024.04.003
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
无向拓扑下多智能体系统目标能控的图论条件
纪亚楠, 纪志坚
青岛大学 a.自动化学院;b.山东省工业控制技术重点实验室,山东 青岛 266071
Graph-theoretic Conditions for Target Controllability of Multi-agent System in Undirected Topology
JI Ya′nan, JI Zhijian
Qingdao University a. School of Automation; b. Shandong Key Laboratory of Industrial Control Technology, Qingdao 266071, China
全文: PDF(1171 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 基于多智能体系统良好的应用前景,研究了无向加权拓扑下一类特殊一般线性多智能体系统目标能控的图论条件。利用图论和矩阵论知识,得到了系统目标能控的充分条件。然后,通过实例分析得到了系统目标能控的充要条件。结果显示在领导者-跟随者连通拓扑下,多智能体系统是目标能控的当且仅当含有跟随者目标节点的连通分量是目标能控的,并且同样的结论适用于非领导者-跟随者连通拓扑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
纪亚楠
纪志坚
关键词 多智能体系统目标能控性无向拓扑领导者-跟随者连通拓扑    
Abstract:Based on the good application prospects of multi-agent systems, we study the graph-theoretic conditions of target controllability for a class of special general linear multi-agent systems under undirected weighted topology. By using the knowledge of graph and matrix theory, a sufficient condition for the target controllability of the system is obtained. Then, through the analyses on actual examples, we obtain a necessary and sufficient condition of target controllability for the system. The results show that under the leader-follower connected topology, the multi-agent system is target controllable if and only if the connected component containing the follower target nodes is target controllable, and the same conclusion applies to the non leader-follower connected topology.
Key wordsmulti-agent system    target controllability    undirected topology    leader-follower connected topology
收稿日期: 2022-12-06      出版日期: 2025-01-03
ZTFLH:  TP273+.5  
  O231.1  
基金资助:国家自然科学基金(62373205,62033007);山东省泰山学者特聘教授人才支持计划(tstp20230624,ts20190930);山东省泰山学者攀登计划和青岛大学系统科学+联合攻关项目(XT2024101)
通讯作者: 纪志坚(1973-),男,山东青岛人,博士,教授,主要研究方向为多智能体网络系统,复杂网络的分析与控制等。   
作者简介: 纪亚楠(1998-),女,山东青岛人,硕士研究生,主要研究方向为群体智能的分析与控制。
引用本文:   
纪亚楠, 纪志坚. 无向拓扑下多智能体系统目标能控的图论条件[J]. 复杂系统与复杂性科学, 2024, 21(4): 13-20.
JI Ya′nan, JI Zhijian. Graph-theoretic Conditions for Target Controllability of Multi-agent System in Undirected Topology[J]. Complex Systems and Complexity Science, 2024, 21(4): 13-20.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.04.003      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I4/13
[1] 武海鹰, 王绪安. 分布式人工智能与多智能体系统研究[J]. 微机发展, 2004, 14(3):80-82.
WU H Y, WANG X A. Research on multi-agent system and distributed AI[J]. Microcomputer Development, 2004, 14(3):80-82.
[2] DAI X K, TANG W J, WANG Y F, et al. A study of an intelligent battlefield damage assessment system based on a multi-agent system[J]. International Journal of Plant Engineering and Management, 2008, 13(1):41-46.
[3] COSTANTINI S, DE GASPERIS G, MIGLIARINI P. Multi-agent system engineering for emphatic human-robot interaction[C] //2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). Sardinia, Italy: IEEE, 2019:36-42.
[4] 李瑞敏, 史其信. 基于多智能体系统的城市交通控制与诱导集成化研究[J]. 公路交通科技, 2004, 21(5):109-112.
LI R M, SHI Q X. Research on integration of urban traffic control and route guidance based on mult-agent[J]. Journal of Highway and Transportation Research and Development, 2004, 21(5):109-112.
[5] LIN K, JI Z. Dynamic event-triggered consensus of general linear multi-agent systems with adaptive strategy[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(8):3440-3444.
[6] TIAN C, LIU K, JI Z. Adaptive event-triggered consensus of multi-agent systems with general linear dynamics[J]. International Journal of Systems Science, 2022, 53(8):1744-1755.
[7] 张志伟, 纪志坚. 有向路径下的一类多智能体系统的能控性分析[J]. 复杂系统与复杂性科学, 2022, 19(2):63-70.
ZHANG Z W, JI Z J. Controllability of multi-agent system based on directed paths[J]. Complex Systems and Complexity Scienc, 2022, 19(2):63-70.
[8] SUN Y, JI Z, LIU Y, et al. On stabilizability of multi-agent systems[J]. Automatica, 2022, 144:1-13.
[9] GUAN Y, JI Z, ZHANG L, et al. Controllability of multi-agent systems under directed topology[J]. International Journal of Robust and Nonlinear Control, 2017, 27(18):4333-4347.
[10] JI Z, LIN H, YU H. Leaders in multi-agent controllability under consensus algorithm and tree topology[J]. Systems & Control Letters, 2012, 61(9):918-925.
[11] CHAO Y, JI Z. Necessary and sufficient conditions for multi-agent controllability of path and star topologies by exploring the information of second-order neighbors[J]. IMA Journal of Mathematical Control and Information, 2021, 38(1):1-14.
[12] GUO J, JI Z, LIU Y. Sufficient conditions and limitations of equivalent partition in multiagent controllability[J]. Science China Information Sciences, 2022, 65(3):1-15.
[13] JI Z, WANG Z, LIN H, et al. Interconnection topologies for multi-agent coordination under leader-follower framework[J]. Automatica, 2009, 45(12):2857-2863.
[14] TANNER H G. On the controllability of nearest neighbor interconnections[C] //The 43rd IEEE Conference on Decision and Control (CDC). Nassau, Bahamas: IEEE, 2004:2467-2472.
[15] GUAN Y, WANG L. Target controllability of multiagent systems under fixed and switching topologies[J]. International Journal of Robust and Nonlinear Control, 2019, 29(9):2725-2741.
[16] LU Z, GUAN Y. Strong targeted controllability of switching signed networks[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 69(3):1109-1113.
[17] LU Z, ZHANG Z, JI Z. Strong targeted controllability of multi-agent systems with time-varying topologies over finite fields[J]. Automatica, 2022, 142:1-5.
[18] 王潇, 纪志坚.基于MAS的无人机新型编队算法[J].复杂系统与复杂性科学, 2019, 16(2): 60-68.
WANG X, JI Z J.A new UAV formation algorithm based on MAS[J].Complex Systems and Complexity Science, 2019, 16(2): 60-68.
[19] 国俊豪, 纪志坚. 基于 NE 结果的多智能体系统模型及其能控性[J]. 复杂系统与复杂性科学, 2021, 18(4): 50-57.
GUO J H, JI Z J. A multi-agent system model based on NE results and its controllability[J]. Complex Systems and Complexity Science, 2021, 18(4): 50-57.
[20] LI Z, REN W, LIU X, et al. Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders[J]. International Journal of Robust and Nonlinear Control, 2013, 23(5): 534-547.
[21] MESBAHI M, EGERSTEDT M. Graph Theoretic Methods in Multiagent Networks[M]. Princeton and Oxford: Princeton University Press, 2010.
[1] 肖朋朋, 纪志坚, 刘允刚, 林崇. InSCC拓扑结构的能控性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 47-55.
[2] 杜向阳, 李伟勋, 陈增强, 张利民. 非线性耦合多智能体系统组编队跟踪控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 72-79.
[3] 冯万典, 彭世国, 曾梓贤. 脉冲控制下半马尔可夫随机MAS的均方一致性[J]. 复杂系统与复杂性科学, 2022, 19(3): 81-87.
[4] 张志伟, 纪志坚. 有向路径下的一类多智能体系统的能控性分析[J]. 复杂系统与复杂性科学, 2022, 19(2): 63-70.
[5] 国俊豪, 纪志坚. 基于NE结果的多智能体系统模型及其能控性[J]. 复杂系统与复杂性科学, 2021, 18(4): 50-57.
[6] 王潇, 纪志坚. 基于MAS的合作—竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
[7] 李英桢, 纪志坚, 刘帅, 杨仪龙. 含时滞多智能体系统的边动态二分一致性[J]. 复杂系统与复杂性科学, 2019, 16(4): 19-30.
[8] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
[9] 仉伟, 纪志坚, 渠继军. 基于领导者对称的多智能体系统可控性研究[J]. 复杂系统与复杂性科学, 2019, 16(2): 52-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed