Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (4): 6-12    DOI: 10.13306/j.1672-3813.2024.04.002
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于适应度有序准入策略的网络凝聚调控
马忠渝1, 程言欣1, 陈李燊1, 廖启嘉1, 钱江海1,2
1.上海电力大学数理学院,上海 200090;
2.华东师范大学软硬件协同设计技术与应用教育部工程研究中心,上海 200062
Regulation of Network Condensation Based on Fitness Ordered Access
MA Zhongyu1, CHENG Yanxin1, CHEN Lisheng1, LIAO Qijia1, QIAN Jianghai1,2
1. College of Mathematics and Physics, Shanghai University of Electric Power,Shanghai 200090,China;
2. Engineering Research Center of Software/Hardware Co-design Technology and Application, Ministry of Education (East China Normal University), Shanghai 200062, China
全文: PDF(2014 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了从理论上寻找有效的反垄断策略,设计了一套基于适应度重排的节点准入规则,并采用复杂网络理论研究了该规则对拓扑凝聚的影响。通过蒙特卡罗模拟和有限尺度效应分析,求得一类典型适应度分布下的临界重排指数,建立了凝聚的相图。该相图表明:存在一个由临界重排指数构成的区间,在此区间之外凝聚会得到有效抑制;相图结构是非对称的,逆序临界重排指数具有非线性发散效应。这些结果可解释当前互联网垄断的成因,并为相应的反垄断政策给出有价值的建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马忠渝
程言欣
陈李燊
廖启嘉
钱江海
关键词 适应度凝聚垄断复杂网络    
Abstract:To find theoretically an effective antitrust policy, we design an access rule for nodes based on the rearrangement of their fitness and study its effect on the topology condensation from the perspective of complex network theory. By Monte-Carlo simulations and the finite size scaling analysis, we obtain the critical rearrangement index for a typical class of fitness distribution and establish the condensation phase diagram. The phase diagram shows that there exists an interval of the critical rearrangement index, outside which the condensation will be effectively suppressed; the phase diagram is asymmetric in structure and the critical reverse-rearrangement index diverges in a nonlinear manner. These results can explain the present monopolistic behavior by internet firms and provide useful suggestion for the corresponding anti-monopoly policy.
Key wordsfitness    condensation    monopoly    complex network
收稿日期: 2023-03-10      出版日期: 2025-01-03
ZTFLH:  TP393  
  N94  
基金资助:华东师范大学软硬件协同设计技术与应用教育部工程研究中心开放研究基金(OP202102)
通讯作者: 钱江海(1983-),男,上海人,博士,副教授,主要研究方向为复杂网络模型、渗流理论、复杂系统的涨落动力学、社会经济系统与统计物理的交叉学科研究。   
作者简介: 马忠渝(1998-),男,新疆乌鲁木齐人,硕士研究生,主要研究方向为复杂网络动力学。
引用本文:   
马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
MA Zhongyu, CHENG Yanxin, CHEN Lisheng, LIAO Qijia, QIAN Jianghai. Regulation of Network Condensation Based on Fitness Ordered Access[J]. Complex Systems and Complexity Science, 2024, 21(4): 6-12.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.04.002      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I4/6
[1] CHO A. Ourselves and our interactions: the ultimate physics problem?[J]. Science, 2009, 325(5939): 406-408.
[2] NEWMAN M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2): 167-256.
[3] CASTELLANO C, FORTUNATO S, LORETO V. Statistical physics of social dynamics[J]. Reviews of Modern Physics, 2009, 81(2): 591-646.
[4] BOCCALETTI S, LATORA V, MORENO Y, et al. Complex networks: structure and dynamics[J]. Physics Reports, 2006, 424(4): 175-308.
[5] BIANCONI G, BARABASI A L. Competition and multiscaling in evolving networks[J]. Europhysics Letters, 2001, 54(4): 436-442.
[6] DOROGOVTSEV S N, MENDES J F F. Evolution of networks[J]. Advances in Physics, 2010, 51: 1079-1187.
[7] BIANCONI G, BARABASI A L. Bose-Einstein condensation in complex networks[J]. Physical Review Letters, 2001, 86(24): 5632-5635.
[8] SORNETTE D, OUILLON G. Dragon-kings: mechanisms, statistical methods and empirical evidence[J]. The European Physical Journal Special Topics, 2012, 205(1): 1-26.
[9] YUKALOV V I, SORNETTE D. Statistical outliers and dragon-kings as bose-condensed droplets[J]. The European Physical Journal Special Topics, 2012, 205(1): 53-64.
[10] SORNETTE D. Dragon-kings, black swans and the prediction of crises[J]. Internation Journal of Terraspance Science and Engineering, 2009, 2(1):1-18.
[11] FERRETTI L, BIANCONI G. Dynamics of condensation in growing complex networks[J]. Physical Review E, 2008, 78(5): 056102.
[12] FERRETTI L, MAMINO M, BIANCONI G. Condensation and topological phase transitions in a dynamical network model with rewiring of the links[J]. Physical Review E, 2014, 89(4): 042810.
[13] SOTOLONGO-COSTA O, RODGERS G J. Bose-Einstein condensation in random directed networks[J]. Physical Review E, 2003, 68(5): 056118.
[14] FERRETTI L, CORTELEZZI M. Preferential attachment in growing spatial networks[J]. Physical Review E, 2011, 84(1): 016103.
[15] GUO J L, SUO Q, SHEN A Z, et al. The evolution of hyperedge cardinalities and Bose-Einstein condensation in hypernetworks[J]. Scientific Reports, 2016, 6(1): 33651.
[16] OHKUBOJ, TANAKA K, HORIGUCHI T. Generation of complex bipartite graphs by using a preferential rewiring process[J]. Physical Review E, 2005, 72(3): 036120.
[17] SUN J, MEDO M, STAAB S. Time-invariant degree growth in preferential attachment network models[J]. Physical Review E, 2020, 101(2): 022309.
[18] BURDA Z, KOTWICA M, MALARZ K. Ageing of complex networks[J]. Physical Review E, 2020, 102(4): 042302.
[19] GRAUER A, LUCHTRATH L, YARROW M. Preferential attachment with location-based choice: degree distribution in the noncondensation phase[J]. Journal of Statistical Physics, 2021, 184(1): 2.
[20] KRAPIVSKY P L, REDNER S, LEYVRAZ F. Connectivity of growing random networks[J]. Physical Review Letters, 2000, 85(21): 4629-4632.
[21] SU GF, ZHANG X B, ZHANG Y. Condensation phase transition in nonlinear fitness networks[J]. Europhysics Letters, 2012, 100(3): 38003.
[22] SUG, LI X W, ZHANG Y.The condensation of non-growing complex networks in Boltzmann limit [J]. Journal of Shanghai Normal University (Natural Sciences),2015,44(5):511-517.
[23] NICOSIA V, BIANCONI G, LATORAV,et al. Nonlinear growth and condensation in multiplex networks[J]. Physical Review E, 2014, 90(4): 042807.
[24] ANANDK, KRIOUKOV D, BIANCONI G. Entropy distribution and condensation in random networks with a given degree distribution[J]. Physical Review E, 2014, 89(6): 062807.
[25] LERA S C, PENTLANDC A, SORNETTE D. Prediction and prevention of disproportionally dominant agents in complex networks[J]. Proceedings of the National Academy of Sciences, 2020, 117(44): 27090-27095.
[26] 姚尚建,周健.国家医保药品谈判的三个维度——药品、准入机制与市场的递进分析[J]. 中共福建省委党校(福建行政学院)学报,2021(4):71-77.
YAO S J, ZHOU J.Three dimensions of national medical insurance drug negotiations: progressive analysis of drugs, access mechanisms, and markets [J]. Journal of Fujian Provincial Committee P-arty School of CPC(Fujian Academy of Governance) ,2021(4): 71-77.
[27] 梁玉秀,吴丽花.市场准入规制政策对网约车平台定价的影响研究[J]. 价格理论与实践, 2021,2:127-131.
LIANG Y X,WU L H.Research on the impact of market access regulation policies on the pricing of ride hailing platforms [J]. Price:Theory & Practice,2021,2:127-131.
[28] PETERMANN T, RIOS P D L. Physical realizability of small-world networks[J]. Physical Review E, 2006, 73(2): 026114.
[29] MOUKARZEL C F, ARGOLLO DE MENEZES M. Shortest paths on systems with power-law distributed long-range connections[J]. Physical Review E, 2002, 65(5): 056709.
[30] 胡英杰,陈伟,郝云宏.互联网金融平台垄断形成、演化与社会福利损失[J]. 中国软科学,2023, 1(11):73-83.
HU Y J,CHEN W,HAO Y H.The formation and evolution of monopoly on internet financial platforms and the loss of social welfare [J]. China Soft Science,2023, 1(11):73-83.
[31] 蔡晓东.数字平台企业垄断形成与规制[J]. 中国价格监管与反垄断,2023(2):55-59.
CAI X D.Monopoly formation and regulation of digital platform enterprises [J]. China Price Supervision and Check ,2023, 2:55-59.
[32] 王帅.作为必需设施的超级平台及其反垄断准入治理[J]. 北方法学,2021,15(5):148-160.
WANG S.Super platform as a necessary facility and its anti monopoly access governance [J]. Northern Legal Science,2021, 15(5) :148-160.  
[1] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[2] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[3] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[4] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[5] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[6] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[7] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[8] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[9] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[10] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[11] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[12] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[13] 杨文东, 黄依宁, 张生润. 基于多层复杂网络的RCEP国际航线网络特征分析[J]. 复杂系统与复杂性科学, 2023, 20(3): 60-67.
[14] 任翠萍, 杨明翔, 张裕铭, 谢逢洁. 快递安全事故致因网络构建及结构特性分析[J]. 复杂系统与复杂性科学, 2023, 20(2): 74-80.
[15] 曾茜, 韩华, 李秋晖, 李巧丽. 基于分包的混合朴素贝叶斯链路预测模型[J]. 复杂系统与复杂性科学, 2023, 20(2): 10-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed