Abstract:A fast finite time containment control strategy is designed for multi-manipulator systems in random vibration environment. The addition of finite-time filter avoids the problem of ‘computation explosion’ when differentiating the virtual control signals by traditional backstepping and improves the convergence speed of the systems by finite-time. By establishing the error compensation mechanism, the influence of filter errors to the control systems is eliminated. Using the relative threshold-event-triggered mechanism effectively reduces resource waste and communication burden. It proves that closed-loop systems are actually fast and finite time stable in mean square. The MATLAB simulation results show the effectiveness of the control strategy.
[1] ZHANG Z, KAYACAN E, THOMPSON B, et al. High precision control and deep learning-based corn stand counting algorithms for agricultural robot[J]. Autonomous Robots, 2020,44(7):1289-1302. [2] 杨怡泽, 杨洪勇, 刘凡. 离散时间多智能体系统群集运动的快速收敛[J]. 复杂系统与复杂性科学, 2018,15(1):56-61. YANG Y Z, YANG H Y,LIU F. Fast convergence for flocking motion of discrete time multi-agent systems[J]. Complex Systems and Complexity Science, 2018,15(1):56-61. [3] MEI J, REN W,MA G F. Distributed containment control for Lagrangian networks with parametric uncertainties under a directed graph[J]. Automatica, 2012,48(4):653-659. [4] RIGOTTI-THOMPSON M, TORRES-TORRITI M, AUAT CHEEIN F A, et al. H∞-based terrain disturbance rejection for hydraulically actuated mobile manipulators with a nonrigid link[J]. IEEE/ASME Transactions on Mechatronics, 2020,25(2):2523-2533. [5] ZHAI J, LI Z. Fast-exponential sliding mode control of robotic manipulator with super-twisting method[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022,69(2):489-493. [6] ZHAO L, JIA Y. Distributed adaptive containment control for second-order multi-agent systems via NTSM[J]. Journal of the Franklin Institute, 2015,352(11):5327-5341. [7] ZHAO L, YU J, LIN C,et al. Adaptive neural consensus tracking for nonlinear multiagent systems using finite-time command filtered backstepping[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018,48(11):2003-2012. [8] CHEN Z, HUANG F, YANG C N, et al. Adaptive fuzzy backstepping control for stable nonlinear bilateral teleoperation manipulators with enhanced transparency performance[J]. IEEE Transactions on Industrial Electronics, 2020,67(1):746-756. [9] 孙玉娇, 杨洪勇, 于美妍. 基于领航跟随的多机器人系统有限时间一致性控制研究[J]. 复杂系统与复杂性科学, 2020,17(4):66-72. SUN Y J, YANG H Y, YU M Y. The finite time consistency control of multi-robot systems based on leader-following systems based on leader-following[J]. Complex Systems and Complexity Science, 2020,17(4):66-72. [10] LI C, ZHAO L, XU Z G.Finite-time adaptive event-triggered control for robot manipulators with output constraints[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022,69(9):3824-3828. [11] ZHAO L, YU J, WANG Q G. Adaptive finite-time containment control of uncertain multiple manipulator systems[J]. IEEE Transactions on Cybernetics, 2022,52(1):556-567. [12] CUI M Y, XIE X J, WU Z J. Dynamics modeling and tracking control of robot manipulators in random vibration environment[J]. IEEE Transa-ctions on Automatic Control,2013,58(6):1540-1545. [13] CUI M Y, WU Z J, XIE X J, et al. Modeling and adaptive tracking for a class of stochastic lagrangian control systems[J]. Automatica, 2013,49(3):770-779. [14] CUI M Y, WU Z J, XIE X J. Output feedback tracking control of stochastic lagrangian systems and its application[J]. Automatica, 2014,50(5):1424-1433. [15] CUI M Y, YANG C, WU Z J. Global trajectory tracking of a class of manipulators without velocity measurements in random surroundings[J]. International Journal of Control, 2022,95(11):3127-3136. [16] WANG H, CHEN B, LIU X P,et al. Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints[J]. IEEE Transactions on Cybernetics, 2013,43(6):2093-2104. [17] QIAN C, LIN W. A continuous feedback approach to global strong stabilization of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2001,46(7):1061-1079. [18] WANG F, YOU Z, LIU Z,et al. A fast finite-time neural network control of stochastic nonlinear systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023,34(10):7443-7452. [19] GUO J, BO Y, JU H P, et al. Adaptive neural control for nonlinear systems with actuator faults and unknown control directions via command filter[J]. International Journal of Robust and Nonlinear Control, 2022,32(4):2100-2118. [20] YU J, ZHAO L, YU H S,et al. Fuzzy finite-time command filtered control of nonlinear systems with input saturation[J]. IEEE Transactions on Cybernetics, 2017,48(8):2378-2387. [21] LEVANT A. Higher-order sliding modes, differentiation and out-put-feedback control[J]. International Journal of Control, 2003,76(9/10):924-941. [22] SONG X Y, ZHAO L.Adaptive fuzzy finite-time consensus tracking for high-order stochastic multi-agent systems with input saturation[J]. International Journal of Fuzzy Systems, 2022,24(8):3781-3795.