Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (4): 65-72    DOI: 10.13306/j.1672-3813.2024.04.011
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
随机多机械臂系统的有限时间包含控制
宋月伟, 赵林
青岛大学自动化学院,山东 青岛 266071
Finite-time Containment Control for Stochastic Multiple Manipulator Systems
SONG Yuewei, ZHAO Lin
School of Automation, Qingdao University, Qingdao 266071, China
全文: PDF(3344 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对随机振动环境下的多机械臂系统,设计了一种快速有限时间包含控制策略。有限时间滤波器的加入避免了用传统反步策略对虚拟控制信号微分时出现的“计算爆炸”问题,并通过有限时间控制提高了系统的收敛速度。通过建立误差补偿机制,消除了滤波误差对控制系统的干扰。采用相对阈值-事件触发机制有效地减少了资源浪费和通信负担。研究结果表明闭环系统是实际快速有限时间均方稳定的,给出的MATLAB仿真结果也证明了控制策略的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋月伟
赵林
关键词 多机械臂随机振动有限时间控制包含控制    
Abstract:A fast finite time containment control strategy is designed for multi-manipulator systems in random vibration environment. The addition of finite-time filter avoids the problem of ‘computation explosion’ when differentiating the virtual control signals by traditional backstepping and improves the convergence speed of the systems by finite-time. By establishing the error compensation mechanism, the influence of filter errors to the control systems is eliminated. Using the relative threshold-event-triggered mechanism effectively reduces resource waste and communication burden. It proves that closed-loop systems are actually fast and finite time stable in mean square. The MATLAB simulation results show the effectiveness of the control strategy.
Key wordsmulti-manipulator    random vibration    finite-time control    containment control
收稿日期: 2023-06-21      出版日期: 2025-01-03
ZTFLH:  TP273  
基金资助:国家自然科学基金(61603204,61973179)
通讯作者: 赵林(1985-),男,山东青岛人,博士,教授,主要研究方向为机器人控制方面的教学与科研。   
作者简介: 宋月伟(1998-),男,山东东营人,硕士研究生,主要研究方向为随机系统控制。
引用本文:   
宋月伟, 赵林. 随机多机械臂系统的有限时间包含控制[J]. 复杂系统与复杂性科学, 2024, 21(4): 65-72.
SONG Yuewei, ZHAO Lin. Finite-time Containment Control for Stochastic Multiple Manipulator Systems[J]. Complex Systems and Complexity Science, 2024, 21(4): 65-72.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.04.011      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I4/65
[1] ZHANG Z, KAYACAN E, THOMPSON B, et al. High precision control and deep learning-based corn stand counting algorithms for agricultural robot[J]. Autonomous Robots, 2020,44(7):1289-1302.
[2] 杨怡泽, 杨洪勇, 刘凡. 离散时间多智能体系统群集运动的快速收敛[J]. 复杂系统与复杂性科学, 2018,15(1):56-61.
YANG Y Z, YANG H Y,LIU F. Fast convergence for flocking motion of discrete time multi-agent systems[J]. Complex Systems and Complexity Science, 2018,15(1):56-61.
[3] MEI J, REN W,MA G F. Distributed containment control for Lagrangian networks with parametric uncertainties under a directed graph[J]. Automatica, 2012,48(4):653-659.
[4] RIGOTTI-THOMPSON M, TORRES-TORRITI M, AUAT CHEEIN F A, et al. H-based terrain disturbance rejection for hydraulically actuated mobile manipulators with a nonrigid link[J]. IEEE/ASME Transactions on Mechatronics, 2020,25(2):2523-2533.
[5] ZHAI J, LI Z. Fast-exponential sliding mode control of robotic manipulator with super-twisting method[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022,69(2):489-493.
[6] ZHAO L, JIA Y. Distributed adaptive containment control for second-order multi-agent systems via NTSM[J]. Journal of the Franklin Institute, 2015,352(11):5327-5341.
[7] ZHAO L, YU J, LIN C,et al. Adaptive neural consensus tracking for nonlinear multiagent systems using finite-time command filtered backstepping[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018,48(11):2003-2012.
[8] CHEN Z, HUANG F, YANG C N, et al. Adaptive fuzzy backstepping control for stable nonlinear bilateral teleoperation manipulators with enhanced transparency performance[J]. IEEE Transactions on Industrial Electronics, 2020,67(1):746-756.
[9] 孙玉娇, 杨洪勇, 于美妍. 基于领航跟随的多机器人系统有限时间一致性控制研究[J]. 复杂系统与复杂性科学, 2020,17(4):66-72.
SUN Y J, YANG H Y, YU M Y. The finite time consistency control of multi-robot systems based on leader-following systems based on leader-following[J]. Complex Systems and Complexity Science, 2020,17(4):66-72.
[10] LI C, ZHAO L, XU Z G.Finite-time adaptive event-triggered control for robot manipulators with output constraints[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022,69(9):3824-3828.
[11] ZHAO L, YU J, WANG Q G. Adaptive finite-time containment control of uncertain multiple manipulator systems[J]. IEEE Transactions on Cybernetics, 2022,52(1):556-567.
[12] CUI M Y, XIE X J, WU Z J. Dynamics modeling and tracking control of robot manipulators in random vibration environment[J]. IEEE Transa-ctions on Automatic Control,2013,58(6):1540-1545.
[13] CUI M Y, WU Z J, XIE X J, et al. Modeling and adaptive tracking for a class of stochastic lagrangian control systems[J]. Automatica, 2013,49(3):770-779.
[14] CUI M Y, WU Z J, XIE X J. Output feedback tracking control of stochastic lagrangian systems and its application[J]. Automatica, 2014,50(5):1424-1433.
[15] CUI M Y, YANG C, WU Z J. Global trajectory tracking of a class of manipulators without velocity measurements in random surroundings[J]. International Journal of Control, 2022,95(11):3127-3136.
[16] WANG H, CHEN B, LIU X P,et al. Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints[J]. IEEE Transactions on Cybernetics, 2013,43(6):2093-2104.
[17] QIAN C, LIN W. A continuous feedback approach to global strong stabilization of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2001,46(7):1061-1079.
[18] WANG F, YOU Z, LIU Z,et al. A fast finite-time neural network control of stochastic nonlinear systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023,34(10):7443-7452.
[19] GUO J, BO Y, JU H P, et al. Adaptive neural control for nonlinear systems with actuator faults and unknown control directions via command filter[J]. International Journal of Robust and Nonlinear Control, 2022,32(4):2100-2118.
[20] YU J, ZHAO L, YU H S,et al. Fuzzy finite-time command filtered control of nonlinear systems with input saturation[J]. IEEE Transactions on Cybernetics, 2017,48(8):2378-2387.
[21] LEVANT A. Higher-order sliding modes, differentiation and out-put-feedback control[J]. International Journal of Control, 2003,76(9/10):924-941.
[22] SONG X Y, ZHAO L.Adaptive fuzzy finite-time consensus tracking for high-order stochastic multi-agent systems with input saturation[J]. International Journal of Fuzzy Systems, 2022,24(8):3781-3795.
[1] 姜田, 生宁. 带死区的多智能体系统事件触发协同控制[J]. 复杂系统与复杂性科学, 2024, 21(4): 58-64.
[2] 纪亚楠, 纪志坚. 无向拓扑下多智能体系统目标能控的图论条件[J]. 复杂系统与复杂性科学, 2024, 21(4): 13-20.
[3] 孔令仁, 亓庆源. 含参数不确定及时滞的线性系统自适应模型预测控制[J]. 复杂系统与复杂性科学, 2024, 21(3): 136-143.
[4] 王震邦, 宋运忠. 考虑多方利益的大规模共享停车匹配优化策略[J]. 复杂系统与复杂性科学, 2023, 20(2): 52-59.
[5] 杜向阳, 李伟勋, 陈增强, 张利民. 非线性耦合多智能体系统组编队跟踪控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 72-79.
[6] 沈宇桐, 徐勇. 带多个信道的布尔控制网络可观测性[J]. 复杂系统与复杂性科学, 2022, 19(2): 45-52.
[7] 张志伟, 纪志坚. 有向路径下的一类多智能体系统的能控性分析[J]. 复杂系统与复杂性科学, 2022, 19(2): 63-70.
[8] 方洁, 姜明浩, 安小宇, 邓玮. 激光复混沌系统构建及其点乘函数投影同步[J]. 复杂系统与复杂性科学, 2021, 18(1): 30-37.
[9] 田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.
[10] 李阳, 田兴华, 张纪会. 基于改进BA网络的遗传算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 69-76.
[11] 王娜, 胡超芳. 基于客观聚类的手写数字识别方法[J]. 复杂系统与复杂性科学, 2019, 16(2): 77-84.
[12] 朱萌萌, 宋运忠. 基于勒贝格采样的非线性系统优化控制[J]. 复杂系统与复杂性科学, 2019, 16(1): 83-93.
[13] 高子林, 王银河. 一类不确定混沌系统的自适应模糊同步控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 79-88.
[14] 成云, 宋运忠. 基于保证集的多智能体系统自触发控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 97-104.
[15] 王光波, 孙仁诚, 隋毅, 邵峰晶. 卷积神经网络复杂性质与准确率的关系研究[J]. 复杂系统与复杂性科学, 2021, 18(2): 60-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed