Please wait a minute...
2025年3月27日 星期四
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (4): 58-64    DOI: 10.13306/j.1672-3813.2024.04.010
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
带死区的多智能体系统事件触发协同控制
姜田, 生宁
青岛科技大学自动化与电子工程学院, 山东 青岛 266071
Event Triggered Cooperative Control of Multi-agent System with Input Dead Zone
JIANG Tian, SHENG Ning
College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266071, China
全文: PDF(1318 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对多智能体系统状态跟踪问题,研究具有输入死区的高阶非线性多智能体系统事件触发协同控制。首先,将死区模型转化为线性项和扰动项。然后,利用模糊逻辑系统对跟随者进行建模,以削弱对系统性能的影响;最后,采用事件触发控制节省带宽,进一步减轻系统的通信负担。此外所提方法不仅能够保证领导者和跟随者的一致性,也能够证明提出的控制方案不受芝诺现象的影响。利用仿真结果验证该设计方案的跟随者所有状态与领导者的状态同步。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜田
生宁
关键词 事件触发控制多智能体协同控制输入死区模糊逻辑系统    
Abstract:Aiming at the state tracking problem of multi-agent systems, this paper studies the event triggered collaborative control of high-order nonlinear multi-agent systems with input dead zones. First, the dead zone model is transformed into linear terms and perturbed terms. Then, using the fuzzy logic system to model the follower to reduce the influence on the system performance. Finally, designing the event triggering control to save bandwidth and further reduce the communication burden of the system. In addition, the proposed method can not only ensure the consistency of the leader and the followers, but also has been proved that the proposed control scheme is not affected by Zeno phenomenon. The simulation results are used to verify that all states of the follower of the design scheme are synchronized with the state of the leader.
Key wordsevent trigger control    higher order nonlinear systems    collaborative control    input dead zone    fuzzy logic system
收稿日期: 2023-03-21      出版日期: 2025-01-03
ZTFLH:  TP273  
基金资助:国家自然科学基金青年项目(62003183)
通讯作者: 生宁(1982-),女,山东青岛人,博士,副教授,主要研究方向为自适应控制、多智能体控制、容错控制。   
作者简介: 姜田(1999-),男,山东威海人,硕士,主要研究方向为多智能体控制。
引用本文:   
姜田, 生宁. 带死区的多智能体系统事件触发协同控制[J]. 复杂系统与复杂性科学, 2024, 21(4): 58-64.
JIANG Tian, SHENG Ning. Event Triggered Cooperative Control of Multi-agent System with Input Dead Zone[J]. Complex Systems and Complexity Science, 2024, 21(4): 58-64.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.04.010      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I4/58
[1] FAX J A, MURRAT R M. Information flow and cooperative control of vehicle formations[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1465-1476.
[2] LI X, HU X, ZHANG R, et al. Routing protocol design for underwater optical wireless sensor networks: a multiagent reinforcement learning approach[J]. IEEE Internet of Things Journal, 2020, 7(10): 9805-9818.
[3] TANG Y, HONG Y, WANG X. Distributed output regulation for a class of nonlinear multi-agent systems with unknown-input leaders[J]. Automatica, 2015, 62: 154-160.
[4] 仉伟, 纪志坚, 渠继军. 基于领导者对称的多智能体系统可控性研究[J]. 复杂系统与复杂性科学, 2019, 16(2): 52-59.
ZHANG W, JI Z J, QU J J.Research on controllability of multi-agent systems based on Leader symmetry [J].Complex Systems and Complexity Science,2019,16(2):52-59.
[5] 李勃, 陈增强, 刘忠信, 等. 含时延的多智能体系统的多静态领导者包容控制[J]. 复杂系统与复杂性科学, 2016, 13(2): 105-110.
LI B, CHEN Z Q, LIU Z X, et al.Multi-static leader inclusion control for multi-agent systems with delay [J].Complex Systems and Complexity Science, 2016, 13(2): 105 110.
[6] CHEN C L P, WEN G X, LIU Y J, et al. Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(6): 1217-1226.
[7] LONG CHENG, ZENG-GUANG HOU, MIN TAN, et al. Neural-network-based adaptive leader-following control for multiagent systems with uncertainties[J]. IEEE Transactions on Neural Networks, 2010, 21(8): 1351-1358.
[8] ZHANG T, LEI C, ZHANG Z, et al. AS-NAS: adaptive scalable neural architecture search with reinforced evolutionary algorithm for deep learning[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(5): 830-841.
[9] LIU Y, MA H. Adaptive tracking control of stochastic switched nonlinear systems with unknown dead-zone output[J]. International Journal of Robust and Nonlinear Control, 2021, 31(10): 4511-4530.
[10] WANG X, DING F, ALSAEDI A, et al. Auxiliary model-based iterative parameter estimation for a nonlinear output-error system with saturation and dead-zone nonlinearity[J]. International Journal of Robust and Nonlinear Control, 2021, 31(9): 4262-4286.
[11] REN C E, ZHANG J, GUAN Y. Prescribed performance bipartite consensus control for stochastic nonlinear multiagent systems under event-triggered strategy[J]. IEEE Transactions on Cybernetics, 2021,53(1):468-482.
[12] 成云, 宋运忠. 基于保证集的多智能体系统自触发控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 97-104.
CHENG Y, SONG Y Z.Self-triggering control of multi-agent systems based on Guarantee Set [J].Complex Systems and Complexity Science, 2017, 14(4): 97-104.
[13] LIANG H, GUO X, PAN Y, et al. Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers[J]. Ieee Transactions on Fuzzy Systems, 2021, 29(6): 1601-1614.
[14] WANG W, LI Y, TONG S. Adaptive fuzzy event-triggered control for leader-following consensus of high-order nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(10): 2389-2400.
[15] ZHAO G, WANG Z, Fu X. Fully distributed dynamic event-triggered semiglobal consensus of multi-agent uncertain systems with input saturation via low-gain feedback[J]. International Journal of Control Automation and Systems, 2021, 19(4): 1451-1460.
[16] 李泽安. 基于事件触发多智能体系统一致性研究[D]. 哈尔滨:哈尔滨工业大学, 2021.
LI Z A.Research on the consistency of event-based trigger multi-agent systems [D].Harbin: Harbin Institute of Technology,2021.
[17] 夏孟瑶, 蒋海军, 于志永. 基于观测的事件触发主从多智能体系统的一致性[J]. 四川师范大学学报(自然科学版), 2022, 45(3): 322-329.
XIA M Y, JIANG H J, YU Z Y.Consistency of master-slave multi-agent systems triggered by observation-based events [J].Journal of Sichuan Normal University (Natural Science Edition), 2022, 45(3): 322-329.
[18] LIU Y J, ZHOU N. Observer-based adaptive fuzzy-neural control for a class of uncertain nonlinear systems with unknown dead-zone input[J]. ISA Transactions, 2010, 49(4): 462-469.
[19] ZHANG H, LEWIS F L. Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics[J]. Automatica, 2012, 48(7): 1432-1439.
[20] CHEN W, WANG J, MA K, et al. Adaptive event-triggered neural control for nonlinear uncertain system with input constraint[J]. International Journal of Robust and Nonlinear Control, 2020, 30(10): 3801-3815.
[1] 宋月伟, 赵林. 随机多机械臂系统的有限时间包含控制[J]. 复杂系统与复杂性科学, 2024, 21(4): 65-72.
[2] 纪亚楠, 纪志坚. 无向拓扑下多智能体系统目标能控的图论条件[J]. 复杂系统与复杂性科学, 2024, 21(4): 13-20.
[3] 孔令仁, 亓庆源. 含参数不确定及时滞的线性系统自适应模型预测控制[J]. 复杂系统与复杂性科学, 2024, 21(3): 136-143.
[4] 王震邦, 宋运忠. 考虑多方利益的大规模共享停车匹配优化策略[J]. 复杂系统与复杂性科学, 2023, 20(2): 52-59.
[5] 杜向阳, 李伟勋, 陈增强, 张利民. 非线性耦合多智能体系统组编队跟踪控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 72-79.
[6] 沈宇桐, 徐勇. 带多个信道的布尔控制网络可观测性[J]. 复杂系统与复杂性科学, 2022, 19(2): 45-52.
[7] 张志伟, 纪志坚. 有向路径下的一类多智能体系统的能控性分析[J]. 复杂系统与复杂性科学, 2022, 19(2): 63-70.
[8] 方洁, 姜明浩, 安小宇, 邓玮. 激光复混沌系统构建及其点乘函数投影同步[J]. 复杂系统与复杂性科学, 2021, 18(1): 30-37.
[9] 田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.
[10] 李阳, 田兴华, 张纪会. 基于改进BA网络的遗传算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 69-76.
[11] 王娜, 胡超芳. 基于客观聚类的手写数字识别方法[J]. 复杂系统与复杂性科学, 2019, 16(2): 77-84.
[12] 朱萌萌, 宋运忠. 基于勒贝格采样的非线性系统优化控制[J]. 复杂系统与复杂性科学, 2019, 16(1): 83-93.
[13] 成云, 宋运忠. 基于保证集的多智能体系统自触发控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 97-104.
[14] 高子林, 王银河. 一类不确定混沌系统的自适应模糊同步控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 79-88.
[15] 肖朋朋, 纪志坚, 刘允刚, 林崇. InSCC拓扑结构的能控性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 47-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed