Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (1): 64-67    DOI: 10.13306/j.1672-3813.2016.01.005
  本期目录 | 过刊浏览 | 高级检索 |
评价长期科学影响的模型
索琪1,2, 郭进利1
1.上海理工大学管理学院,上海 200093;
2.青岛科技大学经济与管理学院,山东 青岛 266061
A Model to Quantify Long-term Scientific Impact
SUO Qi1,2, GUO Jinli1
1. Business School, University of Shanghai for Science and Technology, Shanghai 200093, China;
2. School of Eeconomics and Management, Qingdao University of Science and Technology, Qingdao 266061, China
全文: PDF(379 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 提出了一个更合理的量化长期科学影响模型,并获得模型的解析结果。论文在生命周期内的总引用次数代表了其长期的科学影响,结果显示,该值只与其适应度有关。说明论文本身的内容、质量代表了其竞争力的大小,决定了其长期影响力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
索琪
郭进利
关键词 复杂网络引文网络长期影响    
Abstract:We propose a model to quantify long-term scientific impact and obtain analytic results of the model. It is more reasonable than the model proposed by Barabási et al. The total citation count of a paper in its life cycle represents its long-term scientific impact. The results show that the value is only related to the paper’s fitness. It means that the content and the quality of the paper represents, the capability of its competitiveness, and determine its long-term impact.
Key wordscomplex network    citation network    long-term impact
收稿日期: 2015-05-07      出版日期: 2025-02-25
ZTFLH:  N94  
基金资助:国家自然科学基金(71571119);国家统计科学研究项目(2015LZ497);山东省统计科研重点课题(KT15059)
通讯作者: 郭进利(1960-),男,陕西西安人,博士,教授,主要研究方向为复杂网络、人类行为动力学。   
作者简介: 索琪(1980-),女,黑龙江哈尔滨人,博士研究生,讲师,主要研究方向为复杂网络、超网络。
引用本文:   
索琪, 郭进利. 评价长期科学影响的模型[J]. 复杂系统与复杂性科学, 2016, 13(1): 64-67.
SUO Qi, GUO Jinli. A Model to Quantify Long-term Scientific Impact[J]. Complex Systems and Complexity Science, 2016, 13(1): 64-67.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.01.005      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I1/64
[1] Garfield E. Citation analysis as a tool in journal evaluation[J].Science, 1972, (178):471-479.
[2] Yu P, Van de Sompel H. Networks of scientific papers[J].Science, 1965, 169: 510-515.
[3] Price D S. A general theory of bibliometric and other cumulative advantage processes[J].Journal of the American Society for Information Science, 1976, 27(5): 292-306.
[4] Barabási A L, Albert R. Emergence of scaling in random networks[J].Science, 1999, 286 (5439): 509-512.
[5] Redner S. How popular is your paper? An empirical study of the citation distribution[J].The European Physical Journal B-Condensed Matter and Complex Systems, 1998, 4(2): 131-134.
[6] Bianconi G, Barabási A L. Competition and multiscaling in evolving networks[J].Europhysics Letters, 2001, 54(4): 436.
[7] Caldarelli G, Capocci A, De Los Rios P, et al. Scale-free networks from varying vertex intrinsic fitness[J].Physical Review Letters, 2002, 89(25): 258702.
[8] Servedio V D P, Caldarelli G, Butta P. Vertex intrinsic fitness: how to produce arbitrary scale-free networks[J].Physical Review E, 2004, 70(5): 056126.
[9] Amaral L A N, Scala A, Barthelemy M, et al. Classes of small-world networks[J].Proceedings of the National Academy of Sciences, 2000, 97(21): 11149-11152.
[10] Zhu H, Wang X, Zhu J Y. Effect of aging on network structure[J].Physical Review E, 2003, 68(5): 056121.
[11] Hajra K B, Sen P. Aging in citation networks[J].Physica A, 2005, 346(1): 44-48.
[12] Hajra K B, Sen P. Modelling aging characteristics in citation networks[J].Physica A, 2006, 368(2): 575-582.
[13] Medo M, Cimini G, Gualdi S. Temporal effects in the growth of networks[J].Physical Review Letters, 2011, 107(23): 238701.
[14] Wang M, Yu G, Yu D. Effect of the age of papers on the preferential attachment in citation networks[J].Physica A, 2009, 388(19): 4273-4276.
[15] Wang D, Song C, Barabási A L. Quantifying long-term scientific impact[J].Science, 2013, 342(6154): 127-132.
[16] Guo J L, Suo Q. Comment on “quantifying long-term scientific impact”[DB/OL].[2014-05-15].http://arXiv.org/abs/1405.1574v2, 2014.
[17] Blumm N, Ghoshal G, Forró Z, et al. Dynamics of ranking processes in complex systems[J].Physical Review Letters, 2012, 109(12): 128701.
[1] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[2] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[3] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[4] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[5] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[6] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[7] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[8] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[9] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[10] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[11] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[12] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[13] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[14] 杨文东, 黄依宁, 张生润. 基于多层复杂网络的RCEP国际航线网络特征分析[J]. 复杂系统与复杂性科学, 2023, 20(3): 60-67.
[15] 任翠萍, 杨明翔, 张裕铭, 谢逢洁. 快递安全事故致因网络构建及结构特性分析[J]. 复杂系统与复杂性科学, 2023, 20(2): 74-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed