Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (1): 74-83    DOI: 10.13306/j.1672-3813.2016.01.007
  本期目录 | 过刊浏览 | 高级检索 |
复杂网络上疫情与舆情的传播及其基于免疫的控制策略
刘影1,2, 王伟1, 尚明生1, 唐明1
1.电子科技大学互联科学中心,成都 611731;
2.西南石油大学计算机科学学院,成都 61050
Controlling Epidemic Outbreaks and Public Sentiment Spreading by Vaccination in Complex Network
LIU Ying1,2, WANG Wei1, SHANG Mingsheng1, TANG Ming1
1. Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 611731, China;
2. School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
全文: PDF(1455 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 较为全面的综述复杂网络的免疫问题,包括:真实疫情和舆情传播场景的抽象与建模、疾病传播模型、全局免疫策略和局域免疫策略等。在若干真实网络和模型网络上模拟免疫控制的结果表明,基于中心性、图划分、熟人免疫等策略的免疫效果比随机免疫好,这说明免疫策略的选择对传播控制具有实际指导意义。在选择免疫策略时,应考虑网络的拓扑结构特性和信息的完整程度,才能达到较佳控制效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘影
王伟
尚明生
唐明
关键词 复杂网络传播动力学疫情与舆情 网络免疫    
Abstract:In this paper, an overview of vaccination methods addressing in suppressing the epidemic spreading is given, focusing on modeling the epidemic and public sentiment spreading from real world scenarios, describing models of dynamic spreading, and presenting vaccination strategies and their efficiency. Simulation results on empirical networks and model networks using different vaccination strategies show that vaccination strategies such as centrality-based vaccination, graph partition-based vaccination and acquaintance vaccination are more effective than random vaccination. This implies that vaccination strategy is important and meaningful in suppressing epidemic spreading. In order to reach a better control result, the topological structure and the completeness of network information should be taken into account when choosing a vaccination strategy.
Key wordscomplex network    spreading dynamics    epidemic and public sentiment spreading    network vaccination
收稿日期: 2015-05-07      出版日期: 2025-02-25
ZTFLH:  C93  
  N93  
基金资助:国家自然科学基金(11105025,91324002);西南石油大学科研启航计划(2014QHZ024)
通讯作者: 唐明(1981-),四川资阳人, 博士,副教授,主要研究方向为复杂网络传播动力学。   
作者简介: 刘影(1980-),女,山东烟台人,博士研究生,主要研究方向为复杂网络传播动力学。
引用本文:   
刘影, 王伟, 尚明生, 唐明. 复杂网络上疫情与舆情的传播及其基于免疫的控制策略[J]. 复杂系统与复杂性科学, 2016, 13(1): 74-83.
LIU Ying, WANG Wei, SHANG Mingsheng, TANG Ming. Controlling Epidemic Outbreaks and Public Sentiment Spreading by Vaccination in Complex Network[J]. Complex Systems and Complexity Science, 2016, 13(1): 74-83.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.01.007      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I1/74
[1] 周涛, 汪秉宏, 韩筱璞, 等. 社会网络分析及其在舆情和疫情防控中的应用[J].系统工程学报. 2010, 25(6):742-754.
Zhou Tao, Wang Binghong, Han Xiaopu, et al. Social network analysis and its application in the prevention and control of propagation for public opinion and the epidemic[J].Journal of System Engineering, 2010, 25(6):742-754.
[2] 庄亚明, 余海林. 群体性突发事件信息传播网络特性研究——以抢蜡烛事件为例[J].情报杂志,2013, 32(7):37-42.
Zhuang Yaming, Yu Hailin. Research on characteristics of information propagation network of the mass unexpected incident: a case analysis of panic buying of candles[J].Journal of Intelligence, 2013, 32(7):37-42.
[3] 汪小帆, 李翔, 陈关荣. 网络科学导论[M].北京:高等教育出版社,2012.
[4] 周涛,傅忠谦,牛永伟,等. 复杂网络上传播动力学研究综述[J].自然科学进展,2005,15(5): 513-517.
Zhou Tao, Fu Zhongqian, Niu Yongwei, et al. Review on spreading dynamics on complex network[J].Advance in Natural Science, 2005, 15(5): 513-517.
[5] 马知恩, 周义仓, 王稳地,等. 传染病动力学的数学建模与研究[M].北京:科学出版社,2004.
[6] Newman M E J, Forrest S, Balthrop J. Email networks and the spread of computer viruses[J].Physical Review E, 2002, 66(3):035101(R) (1-4).
[7] 高超,刘际明,钟宁,等. 邮件网络中基于介数的免疫策略研究[J].计算机工程. 2010, 36(5), 18-20.
Gao Chao, Liu Jiming, Zhong Ning, et al. Research on betweenness-based immunization strategy in email networks[J].Computer Engineering, 2010, 36(5), 18-20.
[8] 曹学艳, 段飞飞, 方宽, 等. 网络论坛视角下突发事件舆情的关键节点识别及分类方法[J].图书情报工作,2014, 58(4):65-70.
Cao Xueyan, Duan Feifei, Fang Kuan, et al. Research of identification and classification of emergencies key nodes based on BBS[J].Library and Information Service, 2014, 58(4):65-70.
[9] 杨洪勇, 张嗣瀛. 基于复杂网络的禽流感病毒传播[J].系统仿真学报, 2008, 20(18):5001-5005.
Yang Hongyong, Zhang Siying. Viruses epidemics of avian influenza based on complex networks[J].Journal of System Simulation, 2008, 20(18):5001-5005.
[10] Carmi S, Havlin S, Kirkpatrick S, et al. A model of internet topology using k-shell decomposition[J].Proc Nat Acad Sci, 2007, 104(27): 11150-11154.
[11] Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks[J].Phys Rev E, 2001, 63(6): 066117.
[12] Anderson R M, May R M. Infectious Diseases of Humans[M].Oxford: Oxford University Press, 1991.
[13] Fu X C, Small M, Chen G R. Propagation Dynamics on Complex Networks-Models, Methods and Stability Analysis[M].Beijing: Higher Educational Publishing, 2014:251-258.
[14] Shi H J, Duan Z S, Chen G R, et al. Epidemic spreading on networks with vaccination[J].Chinese Phys B, 2009, 18(8), 3309-3317.
[15] 陈波,于泠,刘君亭,等. 泛在媒体环境下的网络舆情传播控制模型[J].系统工程理论与实践,2011, 31(11): 2140-2150.
Chen Bo, Yu Ling, Liu Junting, et al. Dissemination and control model of internet public opinion in the ubiquitous media environments[J].Systems Engineering-Theory&Practice, 2011, 31(11): 2140-2150.
[16] 王亚奇,蒋国平. 复杂网络中考虑不完全免疫的病毒传播研究[J].物理学报,2010, 59(10): 6734-6743.
Wang Yaqi, Jiang Guoping. Virus spreading on complex networks with imperfect immunization[J].Acta Phys Sin, 2010, 59(10): 6734-6743.
[17] 陈福集, 陈婷, 郑小雪. 一类新SERIS模型上的网络舆情传播行为研究[J].情报资料工作, 2014, 4: 62-67.
Chen Fuji, Chen Ting, Zheng Xiaoxue. An analysis of Internet public opinion propagation behavior based on a new SEIR Model[J].Info and Doc Services, 2014, 4: 62-67.
[18] 康伟. 基于SNA的突发事件网络舆情关键节点识别[J].公共管理学报, 2012, 9(3):101-111.
Kang W. Analysis of the key nodes in public opinion spread during emergencies based on social network theory[J].Journal of Public Management. 2012, 9(3):101-111.
[19] 吕天阳,朴秀峰,谢文艳, 等. 基于传播免疫的复杂网络可控性研究[J].物理学报, 2012, 61(17):170512.
Lü Tianyang, Piao Xiufeng, Xie Wenyan, et al. Controllability of complex networks based on epidemic vaccination[J].Acta Phys Sin, 2012, 61(17) :170512.
[20] Pastor-Satorras R, Vespignani A. Immunization of complex network[J].Phys Rev E, 2002, 65(3): 036104.
[21] Holme P, Kim B J. Attack vulnerability of complex networks[J].Phys Rev E, 2002, 65(5): 056109.
[22] Schneider C M, Mihaljev T, Havlin S, et al. Suppressing epidemics with a limited amount of immunization units[J].Phys Rev E, 2011, 84(6): 061911.
[23] Sabidussi G. The centrality index of a graph[J].Psychometrika, 1966, 31: 581-603.
[24] 任晓龙,吕琳媛. 网络重要节点排序方法综述[J].科学通报,2014,59(13): 1175-1197.
Ren Xiaolong, Lü Linyuan. Review of ranking nodes in complex networks[J].China Science Bulletin, 2014, 59(13):1175-1197.
[25] Kitsak M, Gallos L K, Havlin S, et al. Identification of influential spreaders in complex network[J].Nature Phys, 2010, 6: 888-893.
[26] Brown P E, Feng J L. Measuring user influence on twitter using modified k-shell decomposition[C]//Fifth International AAAI Conference on Weblogs and Social Media. Barcelona: AAAI, 2011:18-23.
[27] Garas A, Schweitzer F, Havlin S. A k-shell decomposition method for weighted networks[J].New J Phys, 2012, 14: 083030.
[28] Liu Y, Tang M, Zhou T, et al. Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition[J].Sci Rep, 2015, 5:9602.
[29] Iyer S, Killingback T, Sundaram B, et al. Attack robustness and centrality of complex networks[J].PLoS ONE, 2013, 8(4):e59613.
[30] Salathé M, Kazandjieva M, Lee J W, et al. A high-resolution human contact network for infectious disease transmission[J].Proceedings of the National Academy of Sciences, 2010, 107(51):22020-22025.
[31] Hébert-Dufresne L, Allard A, Yong Y J, et al. Global efficiency of local immunization on complex networks[J].Sci Rep, 2013, 3:2171.
[32] 刘建国,任卓明,郭强,等. 复杂网络中节点重要性排序的研究进展[J].物理学报,2013, 62(17):178901.
Liu Jianguo, Ren Zhuoming, Guo Qiang, et al. Node importance ranking of complex networks[J].Acta Phys Sin, 2013, 62(17): 178901.
[33] Chen Y P, Paul G, Havlin S, et al. Finding a better immunization strategy[J].Phys Rev Lett, 2008, 101(5): 058701.
[34] 黄斌,赵翔宇, 齐凯,等. 复杂网络的顶点着色及其在疾病免疫中的应用[J].物理学报, 2013, 62(21):218902. Huang B, Zhao X Y, Qi K, et al. Coloring the complex networks and its application for immunization strategy[J].Acta Phys Sin, 2013, 62(21):218902.
[35] Zhao X Y, Huang B, Tang M, et al. Identifying effective multiple spreaders by coloring complex networks[J].Euro Phys Lett, 2014, 108: 68005.
[36] Zhang H F,Zhang J,Zhou C S,et al. Hub nodes inhibit the outbreak of epidemic under voluntary vaccination[J].New J Phys,2010,12: 023015.
[37] Zhang H F, Wu Z X, Xu X K, et al. The impacts of subsidy policies on vaccination decisions in contact networks[J].Phys Rev E, 2013, 88:012813.
[38] Zhang H F, Wu Z X, Tang M, et al. Effects of behavioral response and vaccination policy on epidemic spreading-an approach based on evolutionary-game dynamics[J].Sci Rep, 2013, 4:5666.
[39] Ruan Z Y, Tang M, Liu Z H. Epidemic spreading with information-driven vaccination[J].Phys Rev E, 2012, 86:036117.
[40] Zhang H F, Li K Z, Fu X C, et al. An efficient control strategy of epidemic spreading on scale-free networks[J].Chin Phys Lett, 2009, 26:068901.
[41] Wang W, Tang M, Zhang H F, et al. Epidemic spreading on complex networks with general degree and weight distributions[J].Phys Rev E, 2014, 90: 042803.
[42] Pastor-Satorras R, Vespignani A. Immunization of complex networks[J].Phys Rev E, 2002, 65:036104.
[43] Cohen R, Havlin S, ben-Avraham D. Efficient immunization strategies for computer networks and populations[J].Phys Rev Lett, 2003, 91(24):247901.
[44] Gallos L K, Liljeros F, Argyrakis P, et al. Improving immunization strategies[J].Phys Rev E, 2007, 75(R): 045101.
[45] Holme P. Efficient local strategies for vaccination and networks attack[J].Euro Phys Lett, 2004, 68(6):908-914.
[46] Salathé M, Jones J H. Dynamics and control of diseases in networks with community structure[J].PLoS Comp Bio, 2010, 6(4):e1000736.
[47] Gong K, Tang M, Hui P M, et al. An efficient immunization strategy for community networks[J].PLoS ONE, 2013, 8(12):e83489.
[48] Yang H, Tang M, Zhang H F. Efficient community-based control strategies in adaptive networks[J].New J Phys, 2012(14): 123017.
[49] Wang W, Tang M, Yang H, et al. Asymmetrically interacting spreading dynamics on complex layered networks[J].Sci Rep, 2014, 4:5097.
[50] 李翔,刘宗华,汪秉宏. 网络传播动力学[J].复杂系统与复杂性科学,2010, 7(2/3): 33-37.
Li Xiang, Liu Zonghua, Wang Binghong. On spreading dynamics on networks[J].Complex System and Complexity Sciense, 2010, 7(2/3): 33-37.
[1] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[2] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[3] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[4] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[5] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[6] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[7] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[8] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[9] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[10] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[11] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[12] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[13] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[14] 杨文东, 黄依宁, 张生润. 基于多层复杂网络的RCEP国际航线网络特征分析[J]. 复杂系统与复杂性科学, 2023, 20(3): 60-67.
[15] 曾茜, 韩华, 李秋晖, 李巧丽. 基于分包的混合朴素贝叶斯链路预测模型[J]. 复杂系统与复杂性科学, 2023, 20(2): 10-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed