Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (2): 31-44    DOI: 10.13306/j.1672-3813.2025.02.005
  特邀专栏 本期目录 | 过刊浏览 | 高级检索 |
复杂网络观点动力学分析与干预若干研究进展
张琦1, 汪小帆1,2
1.上海交通大学自动化系,上海 200240;
2.上海应用技术大学智能技术学部,上海 201418
Some Recent Advances in Analysis and Intervention of Opinion Dynamics in Complex Networks
ZHANG Qi1, WANG Xiaofan1,2
1. Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China;
2. Faculty of Intelligence Technology, Shanghai Institute of Technology, Shanghai 201418, China
全文: PDF(6058 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 复杂网络上的观点动力学是近年来网络科学、控制理论和社会学等领域的研究热点,主要关注网络中观点的演化规律及干预策略。本文基于经典观点动力学模型,综述了在Friedkin-Johnsen模型框架基础上发展出的两个主要研究方向。一是社会压力下内隐观点与外显观点的共演化机制,重点介绍从众行为与观点极化的研究进展;二是围绕观点最大化框架,梳理观点干预优化问题的研究思路,并总结在节点选择、干预时机等方面的策略与方法。最后,展望观点动力学在多学科交叉背景下的未来研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张琦
汪小帆
关键词 复杂网络观点动力学观点共演化观点最大化    
Abstract:Opinion dynamics has emerged as a research hotspot in many fields such as network science, control theory and sociology, focusing on the analysis and interventions of opinion evolution in complex networks. This paper reviews two research directions developed from the Friedkin-Johnsen model. First, the co-evolution of implicit opinions and explicit opinions under the social pressure is presented, with an emphasis on recent advances in conformity behavior and opinion polarization. Second, the opinion intervention based on opinion maximization problem is introduced and the recent progress is summarized from perspective of intervention strategies such as node selection and timing selection. Finally, future research directions of opinion dynamics under the intersection of multiple fields are discussed.
Key wordscomplex networks    opinion dynamics    opinion co-evolution    opinion maximization
收稿日期: 2025-04-01      出版日期: 2025-06-03
ZTFLH:  N941.4  
基金资助:国家自然科学基金(62336005);上海市科学技术委员会“科技创新行动计划”基础研究领域重点项目(22JC1401401)
通讯作者: 汪小帆(1967),男,江苏句容人,博士,教授,主要研究方向为复杂动态网络分析与控制。   
作者简介: 张琦(1996),女,内蒙古包头人,博士研究生,主要研究方向为复杂网络动力学系统分析与优化。
引用本文:   
张琦, 汪小帆. 复杂网络观点动力学分析与干预若干研究进展[J]. 复杂系统与复杂性科学, 2025, 22(2): 31-44.
ZHANG Qi, WANG Xiaofan. Some Recent Advances in Analysis and Intervention of Opinion Dynamics in Complex Networks[J]. Complex Systems and Complexity Science, 2025, 22(2): 31-44.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.02.005      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I2/31
[1] AIROLDI E M, CHRISTAKIS N A. Induction of social contagion for diverse outcomes in structured experiments in isolated villages[J]. Science, 2024, 384(6695): 526.
[2] FRIEDKIN N E, PROSKURNIKOV A V, Tempo R, et al. Network science on belief system dynamics under logic constraints[J]. Science, 2016, 354(6310): 321326.
[3] DEL VICARIO M, BESSI A, ZOLLO F, et al. The spreading of misinformation online[J]. Proceedings of the National Academy of Sciences, 2016, 113(3): 554559.
[4] ZHANG Q, WANG L, WANG X, et al. Optimal selection of intervention timing in opinion dynamics[DB/OL].[20250215]. https://ieeexplore.ieee.org/document/10839144.
[5] ZHANG J, LU J, HADJICOSTIS C N. Average consensus for expressed and private opinions[J]. IEEE Transactions on Automatic Control, 2024,69(8): 56275637.
[6] GUESS A M, MALHOTRA N, PAN J, et al. How do social media feed algorithms affect attitudes and behavior in an election campaign?[J]. Science, 2023, 381(6656): 398404.
[7] FASCHING N, IYENGAR S, LELKES Y, et al. Persistent polarization: the unexpected durability of political animosity around US elections[J]. Science Advances, 2024, 10(36): 12.
[8] DEGROOT M. Reaching a consensus[J]. Journal of the American Statistical Association, 1974,69(345): 118121.
[9] FRIEDKIN N E, JOHNSEN E C. Social influence networks and opinion change[J]. Advances In Group Processes, 1999, 16(1): 129.
[10] YE M, QIN Y, A.GOVAERT, et al. An influence network model to study discrepancies in expressed and private opinions[J]. Automatica, 2019, 107: 371381.
[11] ZHANG Q, WANG L, WANG X. Dynamics of coupled implicit and explicit opinions[J]. Automatica, 2024, 167: 111694.
[12] TANG J, ADLER A, AJORLOU A, et al. Estimating true beliefs in opinion dynamics with social pressure[J]. IEEE Transactions on Automatic Control, 2025, 70(5): 30723087.
[13] GIONIS A, TERZI E, TSAPARAS P. Opinion maximization in social networks[C]//2013 SIAM International Conference on Data Mining. Austin, Texas, USA: Society for Industrial and Applied Mathematics, 2013: 387395.
[14] WANG L, CHEN G, Bernardo C, et al. Social power games in concatenated opinion dynamics[J]. IEEE Transactions on Automatic Control, 2024, 69(11): 76147629.
[15] 王龙, 田野, 杜金铭. 社会网络上的观念动力学[J]. 中国科学: 信息科学, 2018, 48(1): 323.
WANG L, TIAN Y, DU J. Opinion dynamics in social networks[J]. Scientia Sinica: Informationis, 2018, 48(1): 323.
[16] PROSKURNIKOV A V, TEMPO R. A tutorial on modeling and analysis of dynamic social networks. Part I[J]. Annual Reviews in Control, 2017, 43: 6579.
[17] PROSKURNIKOV A V, TEMPO R. A tutorial on modeling and analysis of dynamic social networks. Part II[J]. Annual Reviews in Control, 2018, 45: 166190.
[18] HEGSELMANN R, KRAUSE U. Opinion dynamics and bounded confidence models, analysis, and simulation[J]. Journal of Artificial Societies and Social Simulation, 2002, 5(3): 2.
[19] DANDEKAR P, GOEL A, LEE D. Biased assimilation, homophily, and the dynamics of polarization[J]. Proceedings of the National Academy of Sciences, 2013, 110(15): 57915796.
[20] PARSEGOV S E, PROSKURNIKOV A V, Tempo R, et al. Novel multidimensional models of opinion dynamics in social networks[J]. IEEE Transactions on Automatic Control, 2017, 62(5): 22702285.
[21] FRIEDKIN N E, BULLO F. How truth wins in opinion dynamics along issue sequences[J]. Proceedings of the National Academy of Sciences, 2017, 114(43): 1138011385.
[22] BERNARDO C, WANG L, VASCA F, et al. Achieving consensus in multilateral international negotiations: the case study of the 2015 Paris Agreement on climate change[J]. Science Advances, 2021, 7(51): 117.
[23] WANG L, BERNARDO C, HONG Y, et al. Consensus in concatenated opinion dynamics with stubborn agents[J]. IEEE Transactions on Automatic Control, 2023, 68(7): 40084023.
[24] MYERS D G. Social Psychology[M]. 10th. New York, NY: McGraw-Hill, 2010.
[25] BINDEL D, KLEINBERG J, Oren S. How bad is forming your own opinion?[J]. Games and Economic Behavior, 2015, 92: 248265.
[26] FRIEDKIN N, JOHNSEN E. Social influence and opinions[J]. Journal of Mathematical Sociology,1990, 15(3/4): 193206.
[27] ASCH S E. Studies of independence and conformity: I. a minority of one against a unanimous majority[J]. Psychological Monographs: General and Applied, 1956, 70(9): 1.
[28] CHENG C, YU C. Social conformity creates consensus and strong diversity of Hegselmann-Krause opinion dynamics[J]. Science China: Information Sciences, 2022, 65(2): 129202.
[29] HOU J, LI W, JIANG M. Opinion dynamics in modified expressed and private model with bounded confidence[J]. Physica A: Statistical Mechanics and its Applications, 2021, 574: 125968.
[30] LUO Y, LI Y, SUN C, et al. Adapted Deffuant-Weisbuch model with implicit and explicit opinions[J]. Physica A: Statistical Mechanics and its Applications, 2022, 596(15): 127095.
[31] ZHANG Q, WANG L, WANG X, et al. Co-evolution of dual opinions under asynchronous updating[J]. IEEE Control Systems Letters, 2023, 7: 28152820.
[32] BERNARDO C, ALTAFINI C, PROSKURNIKOV A, et al. Bounded confidence opinion dynamics: a survey[J]. Automatica, 2024, 159: 111302.
[33] DEFFUANT G, NEAU D, AMBLARD F, et al. Mixing beliefs among interacting agents[J]. Advances in Complex Systems, 2000, 3(14): 8798.
[34] CHEN G, SU W, MEI W, et al. Convergence of the heterogeneous Deffuant-Weisbuch model: a complete proof and some extensions[J]. IEEE Transactions on Automatic Control, 2025, 70(2): 877888.
[35] GREELEY A, SHEATSLEY P. Attitudes toward racial integration[J]. Scientific American, 1971, 225(6): 1319.
[36] MYERS D, BISHOP G. Discussion effects on racial attitudes[J]. Science, 1970, 169(3947): 778779.
[37] WILSON T, LINDSEY S, SCHOOLER T. A model of dual attitudes[J]. Psychological Review, 2000,107(1): 101.
[38] JADBABAIE A, MAKUR A, Mossel E, et al. Inference in opinion dynamics under social pressure[J]. IEEE Transactions on Automatic Control, 2023, 68(6): 33773392.
[39] TANG J, ADLER A, AJORLOU A, et al. Estimating true beliefs from declared opinions[C]//2024 American Control Conference. Toronto, Ontario, Canada: IEEE, 2024: 27962801.
[40] ZHAN M, KOU G, DONG Y, et al. Bounded confidence evolution of opinions and actions in social networks[J]. IEEE Transactions on Cybernetics, 2022, 52(7): 70177028.
[41] AGHBOLAGH H D, YE M, ZINO L, et al. Coevolutionary dynamics of actions and opinions in social networks[J]. IEEE Transactions on Automatic Control, 2023, 68(12): 77087723.
[42] KEMPE D, KLEINBERG J, TARDOS É. Maximizing the spread of influence through a social network [C] //Proceedings of the 9th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. Washington, DC, USA: Association for Computing Machinery,2003: 137146.
[43] MACKIN E, PATTERSON S. Submodular optimization for consensus networks with noise-corrupted leaders[J]. IEEE Transactions on Automatic Control, 2019, 64(7): 30543059.
[44] ZHAO J, LIU Q, WANG L, et al. Competitiveness maximization on complex networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(7): 10541064.
[45] CLARK A, ALOMAIR B, BUSHNELL L, et al. Minimizing convergence error in multi-agent systems via leader selection: A supermodular optimization approach[J]. IEEE Transactions on Automatic Control, 2014, 59(6): 14801494.
[46] NEMHAUSER G L, WOLSEY L A, FISHER M L. An analysis of approximations for maximizing submodular set functions—I[J]. Mathematical Programming, 1978, 14(1): 265294.
[47] XU P, HU W, WU J, et al. Opinion maximization in social trust networks[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Yokohama, Japan: International Joint Conference on Artificial Intelligence, 2021: 12511257.
[48] SUN H, ZHANG Z. Opinion optimization in directed social networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC, USA: AAAI Press, 2023: 46234632.
[49] FRIEDKIN N E. A formal theory of reflected appraisals in the evolution of power[J]. Administrative Science Quarterly, 2011, 56(4): 501529.
[50] MACKIN E, PATTERSON S. Maximizing diversity of opinion in social networks[C]//2019 American Control Conference. Philadelphia, PA, USA: IEEE, 2019: 27282734.
[51] METAXAS P T, MUSTAFARAJ E. Social media and the elections[J]. Science, 2012, 338(6106): 472473.
[52] ZHOU X, ZHANG Z. Maximizing influence of leaders in social networks[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. Singapore: Association for Computing Machinery, 2021: 24002408.
[53] ZHOU X, ZHU L, LI W, et al. A sublinear time algorithm for opinion optimization in directed social networks via edge recommendation[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Long Beach, CA, USA: Association for Computing Machinery, 2023: 35933602.
[54] ZHU L, BAO Q, ZHANG Z. Minimizing polarization and disagreement in social networks via link recommendation[C]//Advances in Neural Information Processing Systems, 2021, 34: 20722084.
[55] MUSCO C, MUSCO C, TSOURAKAKIS C E. Minimizing polarization and disagreement in social networks[C]//Proceedings of the 2018 World Wide Web Conference. Lyon, France: International World Wide Web Conferences Steering Committee, 2018: 369378.
[56] RÁCZ M Z, RIGOBON D E. Towards consensus: reducing polarization by perturbing social networks[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(6): 34503464.
[57] WANG Y, KLEINBERG J. On the relationship between relevance and conflict in online social link recommendations[J]. Advances in Neural Information Processing Systems, 2023, 36: 3670836725.
[58] AMELKIN V, SINGH A K. Fighting opinion control in social networks via link recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage, AK, USA: Association for Computing Machinery, 2019: 677685.
[59] ZHOU X, SUN H, XU W, et al. Friedkin-Johnsen model for opinion dynamics on signed graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(12): 83138327.
[60] VARMA V S, MORĂRESCU I C, LASAULCE S, et al. Marketing resource allocation in duopolies over social networks[J]. IEEE Control Systems Letters, 2018, 2(4): 593598.
[61] VARMA V S, LASAULCE S, MOUNTHANYVONG J, et al. Allocating marketing resources over social networks: a long-term analysis[J]. IEEE Control Systems Letters, 2019, 3(4): 10021007.
[62] BASTOPCU M, ETESAMI S R, BAŞAR T. Online and offline dynamic influence maximization games over social networks[DB/OL].[20250115]. http://arxiv.org/pdf/2309.14317.
[63] DHAMAL S, BEN-AMEUR W, CHAHED T, et al. Optimal investment strategies for competing camps in a social network: a broad framework[J]. IEEE Transactions on Network Science and Engineering, 2018, 6(4): 628645.
[64] ETESAMI S R. Open-loop equilibrium strategies for dynamic influence maximization game over social networks[J]. IEEE Control Systems Letters, 2022, 6: 14961500.
[65] LANG N, ZHA Q, WANG L. Time-varying targeted marketing in networks based on competitive opinion dynamics[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(6): 36203632.
[66] COOMBS W T, HOLLADAY S J. The Handbook of Crisis Communication[M]. Hoboken, NJ, USA: Wiley Online Library, 2010.
[67] HUANG Y, DISTASO M. Responding to a health crisis on Facebook: The effects of response timing and message appeal[J]. Public Relations Review, 2020, 46(3): 101909.
[68] BERNARDO C, WANG L, FRIDAHL M, et al. Quantifying leadership in climate negotiations: a social power game[J]. PNAS nexus, 2023, 2(11): 365.
[69] SANTORO L R, ASSAF E, BOND R M, et al. Exploring the direct and indirect effects of elite influence on public opinion[J]. Plos One, 2021, 16(11): e0257335.
[70] LIU T, ZHU G, HE J, et al. Early rigorous control interventions can largely reduce dengue outbreak magnitude: experience from Chaozhou, China[J]. BMC Public Health, 2018, 18: 110.
[71] ZHAO Z, SHI L, LI T, et al. Opinion dynamics of social networks with intermittent-influence leaders[J]. IEEE Transactions on Computational Social Systems, 2022, 10(3): 10731082.
[72] SHEN Z, HE G, WU X, et al. Opinion dynamics with intermittent-influence leaders on the signed social network[J]. Engineering Reports, 2023, 5(9): e12649.
[73] KUMAR S, MALLIK A, PANDA B. Influence maximization in social networks using transfer learning via graph-based LSTM[J]. Expert Systems with Applications, 2023, 212: 118770.
[74] REZAEI A A, MUNOZ J, JALILI M, et al. A machine learning-based approach for vital node identification in complex networks[J]. Expert Systems with Applications, 2023, 214: 119086.
[75] HE Q, WANG X, ZHAO Y, et al. Reinforcement-learning-based competitive opinion maximization approach in signed social networks[J]. IEEE Transactions on Computational Social Systems,2022, 9(5): 15051514.
[76] HE Q, ZHANG L, FANG H, et al. Multistage competitive opinion maximization with Q-learning based method in social networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024: 111.
[77] CHUANG Y S, GOYAL A, HARLALKA N, et al. Simulating opinion dynamics with networks of LLM-based agents[DB/OL].[20250115]. http://arxiv.org/pdf/2311.09618v3.
[78] LI C, SU X, HAN H, et al. Quantifying the impact of large language models on collective opinion dynamics[DB/OL].[20250115]. http://arxiv.org/pdf/2308.03313.
[79] CAU E, PANSANELLA V, PEDRESCHI D, et al. Language-driven opinion dynamics in agent-based simulations with LLMs[DB/OL].[20250301]. http://arxiv.org/pdf/2502.19098.
[1] 陶昭, 侯忠生. 复杂网络的无模型自适应牵制控制[J]. 复杂系统与复杂性科学, 2025, 22(2): 120-127.
[2] 李伟莎, 王淑良, 宋博. 基于强化学习风电并网策略下的韧性分析[J]. 复杂系统与复杂性科学, 2025, 22(2): 128-134.
[3] 张明磊, 宋玉蓉, 曲鸿博. 基于图注意力机制的复杂网络关键节点识别[J]. 复杂系统与复杂性科学, 2025, 22(2): 113-119.
[4] 张耀波, 张胜, 王雨萱, 熊聪源. 基于K-shell的复杂网络簇生长维数研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 11-17.
[5] 詹秀秀, 叶涛, 刘闯, 刘雪梅. 农产品贸易网络中国家影响力分析与研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 26-32.
[6] 胡福年, 杨伟丹, 陈军. 基于关键节点的电力信息物理系统鲁棒性评估[J]. 复杂系统与复杂性科学, 2025, 22(1): 43-49.
[7] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[8] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[9] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[10] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[11] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[12] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[13] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[14] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[15] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed