Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (4): 55-62    DOI: 10.13306/j.1672-3813.2025.04.008
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
复杂网络上双向免疫对传染病传播的影响
韩世翔1,2,3, 闫光辉1,2, 裴华艳1,2
1.兰州交通大学电子与信息工程学院,兰州 730070;
2.甘肃省媒体融合技术与传播重点实验室,兰州 730030;
3.北京交通大学计算机科学与技术学院,北京 100044
Impact of Bidirectional Immunization on Epidemic Spreading in Complex Networks
HAN Shixiang1,2,3, YAN Guanghui1,2, PEI Huayan1,2
1. School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
2. Key Laboratory of Media Convergence Technology and Communication, Lanzhou 730030, China;
3. School of Computer Science and Technology, Beijing Jiaotong University, Beijing 100044, China
全文: PDF(6070 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在疫情防控工作中,医疗资源的合理分配一直是从业人员重点关注的内容。为了探究疫情扩散过程中不同免疫措施在防疫工作中的实际效果,提出了一种复杂网络中考虑双向免疫措施的传染病模型。通过对模型的理论分析和数值仿真,详细讨论了针对不同群体的免疫措施对病毒传播的影响。理论分析中,结合基本再生数分析了模型无病平衡点的稳定性。数值仿真中,通过蒙特卡洛模拟分析了复杂网络中双向免疫和人口流动对传染病传播的影响。仿真结果表明,相较于提高感染个体的康复率,增加易感个体的免疫接种率可以更有效地降低传染病的感染规模。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩世翔
闫光辉
裴华艳
关键词 SIR模型复杂网络双向免疫基本再生数    
Abstract:In epidemic prevention and control efforts, the rational allocation of medical resources has consistently been a focal point of attention for professionals in the field. In order to investigate the practical effectiveness of various immune measures in epidemic prevention during the process of pandemic spread, this study introduces an infectious disease model within complex networks that considers bidirectional immune interventions. Through theoretical analysis and numerical simulations of the model, we delve into a detailed discussion on the impact of immune measures targeted at different population groups on the transmission of the virus. In the theoretical analysis, the stability of the disease-free equilibrium point in the model is examined through the incorporation of the basic reproduction number analysis. In numerical simulations, the impact of bidirectional immunization and population mobility on the spread of infectious diseases is scrutinized through Monte Carlo simulations within the context of complex networks. Simulation results indicate that, compared to enhancing the recovery rate of infected individuals, increasing the immunization rate among susceptible individuals can more effectively reduce the scale of infectious diseases.
Key wordsSIR model    complex networks    bidirectional immunization    basic reproduction number
收稿日期: 2023-11-14      出版日期: 2025-12-10
ZTFLH:  TP391  
  N94  
基金资助:国家自然科学基金(62366028);甘肃省自然科学基金(23JRRA1688);甘肃省科技重大专项(23ZDFA012);甘肃省教育厅青年博士项目(2023QB038)
通讯作者: 闫光辉(1970),男,河南商丘人,博士,教授,主要研究方向为人工智能、数据库、社交网络分析等。   
作者简介: 韩世翔(1997),男,甘肃金昌人,硕士研究生,主要研究方向为复杂网络的传播动力学。
引用本文:   
韩世翔, 闫光辉, 裴华艳. 复杂网络上双向免疫对传染病传播的影响[J]. 复杂系统与复杂性科学, 2025, 22(4): 55-62.
HAN Shixiang, YAN Guanghui, PEI Huayan. Impact of Bidirectional Immunization on Epidemic Spreading in Complex Networks[J]. Complex Systems and Complexity Science, 2025, 22(4): 55-62.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.04.008      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I4/55
[1] KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1927, 115(772): 700721.
[2] KERMACK W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemics. II.—The problem of endemicity[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1932, 138(834): 5583.
[3] NEWMAN M E J. Spread of epidemic disease on networks[J]. Physical Review E, 2002, 66(1): 016128.
[4] MAY R M, LLOYD A L. Infection dynamics on scale-free networks[J]. Physical Review E, 2001, 64(6): 066112.
[5] ZANETTE D H. Dynamics of rumor propagation on small-world networks[J]. Physical Review E, 2002, 65(4): 041908.
[6] PASTOR-SATORRAS R, VESPIGNANI A. Epidemic spreading in scale-free networks[J]. Physical Review Letters, 2001, 86(14): 3200.
[7] PASTOR-SATORRAS R, VESPIGNANI A. Epidemic dynamics in finite size scale-free networks[J]. Physical Review E, 2002, 65(3): 035108.
[8] PASTOR-SATORRAS R, VESPIGNANI A. Epidemic dynamics and endemic states in complex networks[J]. Physical Review E, 2001, 63(6): 066117.
[9] WANG F, LIU M, ZHANG L, et al. Bifurcation analysis and optimal control of a network-based SIR model with the impact of medical resources[J]. Nonlinear Analysis: Modelling and Control, 2023, 28: 119.
[10] PEI H, YAN G, HUANG Y. Impact of contact rate on epidemic spreading in complex networks[J]. The European Physical Journal B, 2023, 96(4): 44.
[11] YANG P, JIA J, SHI W, et al. Stability analysis and optimal control in an epidemic model on directed complex networks with nonlinear incidence[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 121: 107206.
[12] ZHU L, ZHOU M, ZHANG Z. Dynamical analysis and control strategies of rumor spreading models in both homogeneous and heterogeneous networks[J]. Journal of Nonlinear Science, 2020, 30: 25452576.
[13] ZHOU J, ZHAO Y, YE Y. Complex dynamics and control strategies of SEIR heterogeneous network model with saturated treatment[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 608: 128287.
[14] LÜ X, FAN D, LI Q, et al. Simplicial SIR rumor propagation models with delay in both homogeneous and heterogeneous networks[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 627: 129131.
[15] XIE Y, WANG Z, LU J, et al. Stability analysis and control strategies for a new SIS epidemic model in heterogeneous networks[J]. Applied Mathematics and Computation, 2020, 383: 125381.
[16] PASTOR-SATORRAS R, VESPIGNANI A. Immunization of complex networks[J]. Physical Review E, 2002, 65(3): 036104.
[17] SUN X L, WANG Y G, CANG L Q. Correlation and trust mechanism-based rumor propagation model in complex social networks[J]. Chinese Physics B, 2022, 31(5): 050202.
[18] VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2): 2948.
[19] BARABÁSI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509512.
[1] 章浩淳, 寇博潇, 张泰杰, 唐智慧. 基于Granger Causality的滑坡机理网络客观权值确定方法[J]. 复杂系统与复杂性科学, 2025, 22(4): 63-70.
[2] 周青, 李依函, 陈文冲. “互联网+”企业创新生态系统网络演化分析[J]. 复杂系统与复杂性科学, 2025, 22(4): 1-7.
[3] 卢新彪, 刘泽诚, 陈贵允, 杨铁流, 高兴. 基于图卷积网络的复杂网络能控性提升方法[J]. 复杂系统与复杂性科学, 2025, 22(4): 24-28.
[4] 陶昭, 侯忠生. 复杂网络的无模型自适应牵制控制[J]. 复杂系统与复杂性科学, 2025, 22(2): 120-127.
[5] 李伟莎, 王淑良, 宋博. 基于强化学习风电并网策略下的韧性分析[J]. 复杂系统与复杂性科学, 2025, 22(2): 128-134.
[6] 张明磊, 宋玉蓉, 曲鸿博. 基于图注意力机制的复杂网络关键节点识别[J]. 复杂系统与复杂性科学, 2025, 22(2): 113-119.
[7] 张琦, 汪小帆. 复杂网络观点动力学分析与干预若干研究进展[J]. 复杂系统与复杂性科学, 2025, 22(2): 31-44.
[8] 詹秀秀, 叶涛, 刘闯, 刘雪梅. 农产品贸易网络中国家影响力分析与研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 26-32.
[9] 张耀波, 张胜, 王雨萱, 熊聪源. 基于K-shell的复杂网络簇生长维数研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 11-17.
[10] 胡福年, 杨伟丹, 陈军. 基于关键节点的电力信息物理系统鲁棒性评估[J]. 复杂系统与复杂性科学, 2025, 22(1): 43-49.
[11] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[12] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[13] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[14] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[15] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed