Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (3): 85-90    DOI: 10.13306/j.1672-3813.2017.03.008
  本期目录 | 过刊浏览 | 高级检索 |
基于节点相似性的LFM社团发现算法
杨晓波1, 陈楚湘1, 王至婉2
1.信息工程大学理学院理学院,郑州 450000;
2.河南中医学院第一附属医院呼吸科,郑州 450000
LFM Community Detection Algorithm Based on Vertex Similarity
YANG Xiaobo1, CHEN Chuxiang1, WANG Zhiwan2
1.College of Science, The Information Engineering University, Zhengzhou 450000, China;
2.Respiratory Department, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
全文: PDF(848 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 传统的局部适应度社团发现算法(LFM)在社团结构模糊的网络中精度下降严重。针对此问题,提出LFMJ算法。利用邻居节点信息和改进的杰卡德系数重构网络,使网络结构更为清楚,社团划分结果更为准确。为验证算法,选择了5种算法在LFR网络和真实网络中进行测试,包括LFMJ、LFM和传统的LPA算法以及性能较好的WT和FUA算法。结果表明:在标准LFR网络中,LFMJ精度高于LFM和LPA,与FUA和WT相当;在真实网络和具有重叠结构的LFR网络中,LFMJ精度优于其他4种算法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨晓波
陈楚湘
王至婉
关键词 复杂网络社团发现节点相似性杰卡德系数    
Abstract:In network with fuzzy community structure, precision of the traditional LFM algorithm decreases apparently. In order to solve this problem, an LFMJ algorithm is presented. Using the information of neighbor nodes and improved Jaccard coefficient, this algorithm reconstructed the network structure, and improved the precision of community division results. To validate the algorithm, five algorithms was tested in LFR benchmark and real networks, including LFMJ, traditional LFM, LPA algorithm and WT, FUA algorithm, which have better performance in community detection. The results show that, in LFR network, the accuracy of LFMJ is higher than both LFM and LPA, equaling to WT and FUA algorithm. In real network and LFR network with overlapping community, LFMJ gets the highest accuracy than others. The effectiveness of the algorithm is proved.
Key wordscomplex network    community detection    vertex similarity    Jaccard coefficient
收稿日期: 2016-11-08      出版日期: 2019-01-10
ZTFLH:  TP391  
基金资助:国家自然科学基金(81574100)
作者简介: 杨晓波(1991),男,河南安阳人,硕士研究生,主要研究方向为复杂网络、社团发现。
引用本文:   
杨晓波, 陈楚湘, 王至婉. 基于节点相似性的LFM社团发现算法[J]. 复杂系统与复杂性科学, 2017, 14(3): 85-90.
YANG Xiaobo, CHEN Chuxiang, WANG Zhiwan. LFM Community Detection Algorithm Based on Vertex Similarity. Complex Systems and Complexity Science, 2017, 14(3): 85-90.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.03.008      或      http://fzkx.qdu.edu.cn/CN/Y2017/V14/I3/85
[1]高启航,景丽萍,于剑,等. 基于结构和适应度的社区发现[J]. 中国科学技术大学学报, 2014, 44(7): 563569.
Gao Qihang, Jing Liping, Yu Jian, et al. Community detection based on structure and fitness [J]. Journal of University of Science and Techno-logy of China, 2014, 44(7): 563569.
[2]Girvan M, Newman M E J. Community structure in social and biological networks [J]. P Natl Acad Sci USA, 2002, 99(12): 78217826.
[3]Newman M E J. Modularity and community structure in networks [J]. Proc of National Academy of Science, 2006, 103(23): 85778582.
[4]Raghavan U N, Albert R, Kumara S. Near linear-time algorithm to detect community structures in large-scale networks [J]. Phys Rev E, 2007, 76(3): 036106.
[5]Pascal P, Matthieu L. Computing communities in large networks using random walks [J]. J Graph Algorithms Appl, 2006, 10(2): 191218.
[6]Blondel V D, Guillaume J L, Lambiotte R, et al. Fast Unfolding of communites in large networks [J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, (10):155168.
[7]刘大有,金弟,何东晓,等. 复杂网络社区挖掘综述[J]. 计算机研究与发展, 2013, 50(10): 21402154.
Liu Dayou, Jin Di, He Dongxiao, et al. Community mining in complex networks [J], Journal of Computer Research and Development, 2013, 50(10): 21402154.
[8]Lancichinetti A, Fortunato S, Kertesz J. Detecting the overlapping and hierarchical community structure in complex networks [J]. New Journal of Physics, 2009, 11(3): 033015.
[9]李建华,汪晓锋,吴鹏. 基于局部优化的社区发现方法研究现状[J]. 中国科学院院刊, 2015, 30(2): 238247.
Li Jianhua, Wang Xiaofeng, Wu Peng. Review on community detection methods based on local optimization [J]. Bulletin of Chinese Academy of Sciences, 2015, 30(2): 238247.
[10] 刘倩,刘群. 基于引力度扩展的重叠社区发现算法[J]. 计算机工程与设计, 2014, 35(3): 852856.
Liu Qian, Liu Qun. Overlapping community detection algorithm based on expansion of gravitational degree [J]. Computer Engineering and Design, 2014, 35(3): 852856.
[11] 张若昕,柴丹炜,熊小峰,等. 基于节点相似度的社团发现算法研究[J]. 电脑知识与技术, 2015, 11(8): 4244.
Zhang Ruoxin, Chai Danwei, Xiong Xiaofeng, et al. The research on community detection algorithm based on node similarity [J]. Computer Knowledge and Techonlogy, 2015, 11(8): 4244.
[12] Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community detection algorithms [J]. Phys Rev E, 2008, 78(4): 046110.
[13] Lancichinetti A, Fortunato S. Community detection algorithms: a comparative analysis [J]. Phys Rev E, 2009, 80(5): 056117.
[1] 丁毓, 刘三阳, 陈静静, 白艺光. 基于复杂网络的差分进化算法研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 1-9.
[2] 张正帅, 陈时军, 周晨, 赵瑞. 利用复杂网络技术分析地震活动性特征[J]. 复杂系统与复杂性科学, 2018, 15(2): 10-17.
[3] 吴宗柠, 吕俊宇, 蔡宏波, 樊瑛. 双曲空间下国际贸易网络建模与分析——以小麦国际贸易为例[J]. 复杂系统与复杂性科学, 2018, 15(1): 31-37.
[4] 应尚军, 纪小妹, 吴婷婷. 国际资本流动网络复杂性研究的总体框架[J]. 复杂系统与复杂性科学, 2018, 15(1): 38-44.
[5] 种鹏云, 尹惠. 蓄意攻击策略下危险品运输网络级联失效仿真[J]. 复杂系统与复杂性科学, 2018, 15(1): 45-55.
[6] 谭少林, 吕金虎. 复杂网络上的演化博弈动力学——一个计算视角的综述[J]. 复杂系统与复杂性科学, 2017, 14(4): 1-13.
[7] 李树彬, 傅白白, 孙涛, 党文修, 高歌. 复杂网络中观交通流动态限速控制策略研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 32-42.
[8] 李甍娜, 郭进利, 卞闻, 常宁戈, 肖潇, 陆睿敏. 网络视角下的唐诗[J]. 复杂系统与复杂性科学, 2017, 14(4): 66-71.
[9] 傅杰, 邹艳丽, 谢蓉. 基于复杂网络理论的电力网络关键线路识别[J]. 复杂系统与复杂性科学, 2017, 14(3): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed