Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (1): 1-39    DOI: 10.13306/j.1672-3813.2016.01.001
  本期目录 | 过刊浏览 | 高级检索 |
复杂网络上流行病传播动力学的爆发阈值解析综述
李睿琪1,2, 王伟1, 舒盼盼1, 杨慧1, 潘黎明1, 崔爱香1, 唐明1
1.电子科技大学互联网科学中心,成都 611731;
2.北京师范大学系统科学学院,北京 100875
Review of Threshold Theoretical Analysis About Epidemic Spreading Dynamics on Complex Networks
LI Ruiqi1,2, WANG Wei1, SHU Panpan1, YANG Hui1, PAN Liming1, CUI Aixiang1, TANG Ming1
1. Web Science Center, University of Electronic Science and Technology of China, Chengdu 611731, China;
2. School of Systems Science, Beijing Normal University, Beijing 100875, China
全文: PDF(4725 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 对流行病传播爆发阈值的理论解析方法进行总结,主要介绍平均场、点对近似、主方程、边渗流、空穴理论、边划分以及谱分析这7种常用的动力学解析方法的前提假设、具体思路、步骤及其应用局限,并且梳理总结了SIS与SIR模型爆发阈值的异同。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李睿琪
王伟
舒盼盼
杨慧
潘黎明
崔爱香
唐明
关键词 复杂网络流行病传播爆发阈值理论解析    
Abstract:In this Review, we mainly focus on solving the threshold theoretically, and introduce seven common methods, including Mean-Field theory, Pair-wise Approximation, Master equation, Generating Function, Edge Percolation, Cavity method, Edge Classification and Spectral analysis. We also summarize the difference of thresholds between the SIS and SIR model. We are aiming to provide a clear picture for beginners and a good reference for researchers
Key wordscomplex networks    epidemic spreading    outbreak threshold    theoretical analysis
收稿日期: 2014-12-24      出版日期: 2025-02-25
ZTFLH:  N93  
  N94  
基金资助:国家自然科学基金(11105025,11575041)
作者简介: 李睿琪(1992-),男,河北张家口人,博士研究生,主要研究方向为复杂网络传播动力学、城市演化动力学、交通分析、人类动力学、风险投资网络分析、大数据分析与建模。
引用本文:   
李睿琪, 王伟, 舒盼盼, 杨慧, 潘黎明, 崔爱香, 唐明. 复杂网络上流行病传播动力学的爆发阈值解析综述[J]. 复杂系统与复杂性科学, 2016, 13(1): 1-39.
LI Ruiqi, WANG Wei, SHU Panpan, YANG Hui, PAN Liming, CUI Aixiang, TANG Ming. Review of Threshold Theoretical Analysis About Epidemic Spreading Dynamics on Complex Networks[J]. Complex Systems and Complexity Science, 2016, 13(1): 1-39.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.01.001      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I1/1
[1] Anderson R M, May R M. Infectious Diseases of Humans: dynamics and control[M].Oxford: Oxford University Press, 1992.
[2] Dailey D J, Gani J. Epidemic Modeling: An Introduction[M].Cambridge: Cambridge University Press, 2001.
[3] Bernoulli D.Essai d'une nouvelle analyse de la mortalite causee par la petite verole et des avantages de l'inoculation pour la prevenir[J].Mem Math Phys Acad Roy Sci, 1760, 1-45.
[4] Kermack W O, McKendrick A G. A contribution to the mathematical theory of epidemics[J].Proc R Soc Lond A, 1927, 115, 772: 700-721.
[5] Albert R, Barabsi A L. Statistical mechanics of complex networks[J].Rev Mod Phys, 2002, 74:47.
[6] Boccaletti S, Latora V, Moreno Y, et al. Complex networks: structure and dynamics[J].Phys Rep, 2006,424: 175.
[7] Newman M E J.Networks: An Introduction[M].Oxford: Oxford University Press, 2010.
[8] Butts C T. Revisiting the foundations of network analysis[J].Science, 2009, 325: 414.
[9] Jackson M. Social and Economic Networks[M].Princeton: Princeton University Press, 2010.
[10] Vespignani A. Predicting the behavior of techno-Social systems[J].Science, 2009, 325 (5939): 425.
[11] Vespignani A. Modeling dynamical processes in complex socio-technical systems[J].Nature Physics, 2012, 8: 32-39.
[12] Dorogovtsev S N,Goltsev A V. Critical phenomena in complex networks[J].Rev Mod Phys, 2008, 80: 1275.
[13] Barrat A, Barthelmy M, Vespignani A.Dynamical Processes on Complex Networks[M].New York: Cambridge University Press, 2008.
[14] Pastor-Satorras R, VespignaniA. Epidemic spreading in scale-free networks[J].Phys Rev Lett, 2001, 86: 32001.
[15] Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks[J].Phys Rev E, 2001, 63(6): 066117.
[16] Hufnagel L, Brockmann D, Geisel T. Forecast and control of epidemics in aglobalized world[J].Proc Natl Acad Sci, 2004, 101: 15124.
[17] Colizza V, Barrat A, Barthélemy M, et al. The role of the airline transportation network in the prediction and predictability of global epidemics[J].Proc Natl Acad Sci, 2006, 103: 2015.
[18] Balcan D, Hu H, Goncalves B,et al. Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility[J].BMC Medicine, 2009, 7: 45.
[19] Brockmann D, Helbing D.The hidden geometry of complex, network-driven contagion phenomena[J].Science, 2013, 342 (6164): 1337-1342.
[20] Henkel M, Hinrichsen H, Lubeck S. Non-equilibrium phase transition: Absorbing Phase Transitions[M].Netherlands: Springer Verlag, 2008.
[21] Danon L,Ford A P,House T,et al. Networks and the epidemiology of infectious disease[J].Interdisciplinary Perspectives on Infectious Diseases, 2011:284909.
[22] Keeling M, Rohani P. Modeling Infectious Diseases in Humans and Animals[M].Princeton: Princeton University Press, 2010.
[23] Moreno Y, Pastor-Satorras R, Vespignani A. Epidemic outbreaks in complex heterogeneous networks[J].Eur Phys J B, 2002, 26: 521-529.
[24] Boguna M, Pastor-Satorras R, Vespignani A.Absence of epidemic threshold in scale-free networks with degree correlation[J].Phys Rev Lett, 2003, 90: 2.
[25] Castellano C, Pastor-Satorras R. Thresholds for epidemic spreading in networks[J].Phys Rev Lett, 2010, 105(21): 218701.
[26] Eguiluz V M, Klemm K. Epidemic threshold in structured scale-free networks[J].Phys Rev Lett, 2002, 89: 10.
[27] Parshani R, Carmi S, Havlin S. Epidemic threshold for the susceptible-infectious-susceptible model on random networks[J].Phys Rev Lett, 2010, 104(25): 258701.
[28] Gleeson J P, Melnik S, Ward J A,et al. Accuracy of mean-field theory for dynamics on real-world networks[J].Phys Rev E, 2012, 85(2): 026106.
[29] Guerra B, Gómez-Gardeñes J. Annealed and mean-field formulations of disease dynamics on static and adaptive networks[J].Phys Rev E, 2010, 82(3): 035101.
[30] Sood V,Redner S. Voter model on heterogeneous graphs[J].Phys Rev Lett, 2005, 94(17): 178701.
[31] Pikovsky A S, Rosenblum M G, Kurths J. Synchronization in a population of globally coupled chaotic oscillators[J].EPL, 1996, 34: 165.
[32] 于渌, 郝柏林. 相变和临界现象[M].北京: 科学出版社, 1984.
[33] 林宗涵. 热力学与统计物理学[M].北京: 北京大学出版社, 2007.
[34] Landau L D, Lifshitz. Statistical Physics[M].3rd Edition London: Pergamon Press, 1986.
[35] Stanley H E. Introduction to Phase transition and Critical Phenomena[M].New York: Oxford Univ Press, 1971.
[36] 苏汝铿. 统计物理学[M].第2版,上海:高等教育出版社, 2004.
[37] Bailey N T J. The Mathematical Theory of Infectious Diseases and Its Applications[M].New York: Hafner Press, 1975.
[38] Gomez S, Gómez-Gardenes J, Moreno Y,et al. Nonperturbative heterogeneous mean-field approach to epidemic spreading in complex networks[J].Phys Rev E, 2011, 84(3): 036105.
[39] Durrett R. Some features of the spread of epidemics and information on a random graph[J].Proc Natl Acad Sci, 2010, 107: 4491.
[40] Baronchelli A, Loreto V. Ring structures and mean first passage time in networks[J].Phys Rev E, 2006, 73(2): 026103.
[41] Baronchelli A, Pastor-Satorras R. Mean-field diffusive dynamics on weighted networks[J].Phys Rev E, 2010, 82(1): 011111.
[42] Gleeson J P. High-accuracy approximation of binary-state dynamics on networks[J].Phys Rev Lett, 2011, 107(6): 068701.
[43] Milo R, Shen-Orr S,Itzkovitz S,et al. Network motifs: simple building blocks of complex networks[J].Science, 2002, 298: 824.
[44] Zanette D H, Negro R, Argentina. Dynamics of rumor propagation on small-world networks[J].Phys Rev E, 2001, 65(4): 041908.
[45] Baronchelli A, Castellano C, Pastor-Satorras R. Voter models on weighted networks[J].Phys Rev E, 2011, 83(6): 066117.
[46] Liu Z, Wang X, Wang M. Inhomogeneity of epidemic spreading[J].Chaos, 2010, 20(2): 023128.
[47] Boguñá M, Pastor-Satorras R, Vespignani A. Epidemic spreading in complex networks with degree correlations[C]//Proceedings of the XVII Sitges Conference on Statistical Mechanics,Berlin,Germany, 2003:127.
[48] Yang Z, Zhou T. Epidemic spreading in weighted networks: an edge-based mean-field solution[J].Phys Rev E, 2012, 85(5), 056106.
[49] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J].Nature, 1998, 393: 4.
[50] Barabási A L, Albert R. Emergence of scaling in random networks[J].Science, 1999, 286: 509-512.
[51] Newman M E J. Power laws, Pareto distributions and Zipf's law[J].Contemporary Physics, 2005, 46: 5.
[52] Castellano C, Pastor-Satorras R. Competing activation mechanisms in epidemics on networks[J].Sci Rep, 2012, 2: 371.
[53] Yang R, Wang B H, Ren J,et al. Epidemic spreading on heterogeneous networks with identical infectivity[J].Phys Lett A, 2007, 364: 189-193.
[54] Alexandrowicz Z. Critically branched chains and percolation clusters[J].Phys Lett A, 1980, 80: 4.
[55] Kenah E, Robins J M. Second look at the epidemic spread[J].Phys Rev E, 2007, 76(3): 036113.
[56] Karp R,Schindelhauer C,Shenker S,et al. Randomized rumor spreading[Z].Foundations of Computer Science. Proceedings of 41st Annual Symposium, 2000:565-574.
[57] 许田, 张培培, 姜玉梅, 等. 流行病传播模型与SARS[J].自然杂志, 2004, 26(1): 20-25.
Xu Tian, Zhang Peipei, Jiang Yumei, et al. Epidemic spreading models and SARS[J].Ziran Zazhi, 2004, 26(1): 20-25.
[58] Saumell-Mendiola A, Serrano M A, Boguna M. Epidemic spreading on interconnected networks[J].Phys Rev E, 2012, 86(2): 026106.
[59] Rand D A. Correlation equations and pair approximations for spatial ecologies[J].Advanced Ecological Theory: Principles and Applications, 2009, 12 (34):329-368.
[60] Keeling M J, Rand D A. Spatial correlations and local fluctuations in host parasite systems[J].From Finite to Infinite Dimensional Dynamical Systems, 2001: 5-57.
[61] Keeling M J.The effects of local spatial structure on epidemiological invasions[J].Proc R SocLond B, 1999, 266 (1421): 859-867.
[62] Morris A J. Representing spatial interactions in simpleecological models[D].UK: University of Warwick, 1997.
[63] Benoit J, Nunes A, Teloda G M. Pair approximation models for disease spread[J].Eur Phys J B, 2006, 50 (1/2): 177-181.
[64] Eames K T D, Keeling M J. Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases[J].Proc Natl Acad Sci, 2002, 99: 13330-13335.
[65] Pugliese E,Castellano C. Heterogeneous pair approximation for voter models on networks[J].EPL, 2009, 88 (5): 58004.
[66] Shaw L B,SchwartzI B. Fluctuating epidemics on adaptive networks[J].Phys Rev E, 2008, 77 (6): 066101.
[67] Gross T, D’Lima C J D, Blasius B. Epidemic dynamics on an adaptive network[J].Phys Rev Lett, 2006, 96 (20):208701 .
[68] Shaw L B, Schwartz I B. Enhanced vaccine control of epidemics in adaptive networks[J].Phys Rev E,2010, 81 (4): 046120.
[69] Keeling M J, Rand D A, Morris A J. Correlation models for childhood epidemics[J].Proc R Soc B, 1997, 264 (1385): 1149-1156.
[70] CaldarelliG, Pastor-Satorras R, Vespignani A. Structure of cycles and local ordering in complex networks[J].Eur Phys J B,2004, 38 (2): 183-186.
[71] GleissP M, Stadler P F, Wagner A, et al.Relevant cycles in chemical reaction networks[J].Adv Complex Syst, 2001, 4 (5): 207-226.
[72] Sato K, Matsuda H, Sasaki A. Pathogen invasion and host extinction in lattice structured populations[J].J Math Biol, 1994, 32 (3): 251-268.
[73] Keeling M J. The ecology and evolution of spatial host-parasite systems[D].UK: University of Warwick, 1995.
[74] Nakamaru M, Matsuda H, IwasaY. The evolution of cooperation in a lattice-structured population[J].J Theor Biol, 1997, 184 (1): 65-81.
[75] Szabó G,Hauert C. Evolutionary prisoner’s dilemma games with voluntary participation[J].Phys Rev E,2002, 66 (6): 062903.
[76] Perc M,Marhl M. Evolutionary and dynamical coherence resonances in the pair approximated prisoner'sdilemma game[J].New J Phys, 2006, 8: 142.
[77] Marceau V, Noël P A, Hébert-Dufresne L,et al. Adaptive networks: coevolution of disease and topology [J].Phys Rev E, 2010, 82(3): 036116.
[78] Catanzaro M, Boguñá M,Pastor-Satorras R. Generation of uncorrelated random scale-free networks[J].Phys Rev E, 2005, 71(2): 027103.
[79] Durrett R, Gleeson J P, Lloyd A L,et al. Graph fission in an evolving voter model[J].Proc Natl Acad Sci, 2012, 109: 3682-3687.
[80] Mollison D. Spatial contact models for ecological and epidemic spread[J].J Roy Stat Soc B, 1977, 39: 283-326.
[81] Grassberger P. On the critical behavior of the general epidemic process and dynamical percolation[J].Math Biosci, 1982, 63: 157-172.
[82] Newman M E J. Spread of epidemic disease on networks[J].Phys Rev E, 2002, 66(1): 016128.
[83] Newman M E J. Threshold effects for two pathogens spreading on a network[J].Phys Rev Lett, 2005: 95(10):108701.
[84] Meyers L A, Newman M E J, Martin M,et al. Applying network theory to epidemics: Control measures for mycoplasma pneumoniae outbreaks[J].EID, 2003, 92: 204.
[85] Madar N, Kalisky T, Cohen R, et al. Immunization and epidemic dynamics in complex networks[J].Eur Phys J B, 2004, 38: 269.
[86] Noël P A, Davoudi B, Brunham R C, et al. Time evolution of epidemic disease on finite and infinite networks[J].Phys Rev E,2009, 79(2): 026101.
[87] Marder M. Dynamics of epidemics on random networks[J].Phys Rev E, 2007, 75: 066103.
[88] Miller J C. Epidemic size and probability in populations with heterogeneous infectivity and susceptibility[J].Phys Rev E, 2007, 76(1): 010101.
[89] Serrano M A, Boguñá M. Percolation and epidemic thresholds in clustered networks[J].Phys Rev Lett, 2007, 97(8): 088701.
[90] Newman M E J. Random graphs with clustering[J].Phys Rev Lett, 2009, 103(5): 058701.
[91] Newman M E J. Competing epidemics on complex networks[J].Phys Rev E, 2011, 84(3): 036106.
[92] Allard A, Noël P A, DubéL J. Heterogeneous bond percolation on multitype networks with an application to epidemic dynamics[J].Phys Rev E, 2009, 79(3): 036113.
[93] Funk S, Jansen V A. Interacting epidemics on overlay networks[J].Phys Rev E, 2010, 81(3): 036118.
[94] Dickison M, Havlin S, Stanley H E. Epidemics on interconnected networks[J].Phys Rev E, 2012, 85(6), 066109.
[95] Wang Y, Xiao G. Epidemics spreading in interconnected complex networks[J].Phys Lett A, 2012, 376: 42-43.
[96] Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference[M].San Francisco:Morgan Kaufmann,1988.
[97] Mézard M, Parisi M, Virasoro M. Spin Glass Theory and Beyond World Scientific[M].Singapore:Pergamon Press, 1987.
[98] Mézard M, Parisi G. The Bethe lattice spin glass revisited[J] , Eur Phys J B,2001, 20(2):217-233.
[99] Karrer B, Newman M E J. Message passing approach for general epidemic models[J].Phys Rev E, 2010,82(1):016101.
[100] Bianconi G, Gulbahce N. Algorithm for counting large directed loops[J].J Phys A Math Theor, 2008,41(22):224008.
[101] Sulc P, Zdeborov L. Belief propagation for graph partitioning[J].J Phys A MathTheor, 2010,43(28):285003.
[102] Shiraki Y, Kabashima Y. Cavity analysis on the robustness of random networks against targeted attacks: influences of degree-degree correlations[J].Phys Rev E, 2010, 82(3): 036101.
[103] Reichardt J, Alamino J, Saad D. The interplay of microscopic and mesoscopic structure in complex networks[DB/OL].[2014-06-30].arXiv.org/abs/1012.4524.
[104] Yoon S, Goltsev A V, Dorogovtsev S N, et al. Belief-propagation algorithm and the ising model on networks with arbitrary distributions of motifs[J].Phys Rev E,2011,84(4):041144.
[105] Pastor-Satorras R, Vespignani A. Epidemic dynamics in ?nite size scale-free networks[J].Phys Rev E,2002,65(3): 035108.
[106] Shao J, Buldyrev S V, Braunstein L A, et al. Structure of shells in complex networks[J].Phys Rev E, 2009, 80(3):036105.
[107] 张昊,陈超,王长春. 基于空穴理论的复杂网络流行病传播控制[J].电子科技大学学报,2011, 40:4.
Zhang Hao, Chen Chao, Wang Changchun. Epidemic spread and control on complex networks using cavity theory[J].JUESTC, 2011, 40:4.
[108] Altarelli F, Braunstein A, Dall'Asta L, et al. The spread optimization problem[DB/OL].[2014-06-30]. arXiv/org/abs/1203.1426v1.
[109] Volz E. SIR dynamics in random networks with heterogeneous connectivity[J].Math Biol, 2008, 56:293-310.
[110] Miller J C. A note on the derivation of epidemic final sizes[J].Bull Math Biol, 2012, 74:2125-2141.
[111] Miller J C. A note on a paper by Erik Volz: SIR dynamics in random networks[J].Math Biol, 2011, 62:349-358.
[112] Miller J C, Slim A C, Volz M E. Edge-based compartmental modeling for infectious disease spread part I: an overview[J].Journal of the Royal Society Interface,2011,9(20):890-906.
[113] Miller J C, Volz M E. Edge-based compartmental modeling for epidemic spread Part II: model selection and hierarchies[J].Journal of Mathematical Biology,2013,67(4):869-899.
[114] Miller J C, Volz M E. Edge-based compartmental modeling for infectious disease spread Part III: disease and population structure[J].Eprint Arxiv,2011,9(70):890-906.
[115] Volz E, Frost S D W, Rothenberg R, et al. Epidemiological bridging by injection druguse drives an early HIV epidemic[J]. Epidemics,2010,2(3):155-164.
[116] Volz E, Meyers L A. Epidemic thresholds in dynamic contact networks[J].J R Soc Interface, 2009, 6: 233-241.
[117] Volz E M, Miller J C, Galvani A, et al. Effects of heterogeneous and clustered contact patterns on infectious disease dynamics[J].PLoS Computational Biology, 2011, 7(6): e1002042.
[118] Miller J C. Epidemics on networks with large initial conditions or changing structure[J].Plos One,2014,9(7):e101421.
[119] Valdez L D, Macri P A, Braunstein L A. Intermittent social distancing strategy for epidemic control[J].Phys Rev E, 2012, 85(3): 036108.
[120] Valdez L D, Macri P A, Braunstein L A. Temporal percolation of the susceptible network in an epidemic spreading[J].PLoS ONE,2012,7(9): e44188.
[121] Valdez L D, Macri P A, Braunstein L A. Temporal percolation of a susceptible adaptive network[J].Physica A, 2013, 392(18), 4172-4180.
[122] Boguá M, Pastor-Satorras R, Epidemic spreading in correlated complex networks[J].Phys Rev E, 2002, 66 (4): 047104.
[123] Wang Y, Chakrabarti D, Wang C, et al. Epidemic spreading in real networks: an eigenvalue viewpoint[C]//Proceedings of the 22nd Symposium on Reliable Distributed Systems, Florece, Italy,2003: 25-34.
[124] Chung F, Lu L, Vu V. Spectra of random graphs with given expected degrees[J].Proc Natl Acad Sci. 2003, 100 (11): 6313-6318.
[125] Boguá M, Pastor-Satorras R, Vespignani A. Cut-offs and finite size effects in scale-free networks[J].Eur Phys J B, 2004, 38 (2): 205-209.
[126] Kephart J O, White S R. Directed-graph epidemiological models of computer viruses[C]//Proceedings of the 1991 IEEE Computer Science Symposium on Research in Security and Privacy, New York, USA, 1991: 343-359.
[127] Chakrabarti D, Leskovec J, Faloutsos C, et al. Information survival threshold in sensor and P2P networks[C]//26th IEEE International Conference on Computer Communications, Anchorage, USA, 2007:1316-1324.
[128] Restrepo J G, Ott E, Hunt B R. Emergence of synchronization in complex networks of interacting dynamical systems[J], Physica D, 2006, 224 (1/2): 114-122.
[129] Feng J, Jirsa V K, Ding M. Synchronization in networks with random interactions: theory and applications[J], Chaos, 2006, 16 (1): 015109.
[130] Cohen R, Erez K, Ben-Avraham D, et al. Resilience of the internet to random breakdowns[J].Phys Rev Lett, 2000, 85 (21): 4626-4628
[131] Vazquez A, Moreno Y. Resilience to damage of graphs with degree correlations[J].Phys Rev E, 2003, 67 (1): 015101(R).
[132] Boguá M, Serrano M A. Generalized percolation in random directed networks[J].Phys Rev E, 2005, 72 (1): 016106.
[133] Molloy M, Reed B. The size of the giant component of a random graph with a given degree sequence[J].Combinatorics, Prob Comput, 1998, 7(3):295.
[134] Gómez S, Borge-Holthoefer J, Meloni S,et al. Discrete-time Markov chain approach to contact-based disease spreading in complex networks [J].EPL, 2010, 89 (3): 38009.
[135] Gibson G J. Markov chain Monte Carlo methods for fitting spatiotemporal stochastic in plant epidemiology[J].Appl Stat, 1997, 46(2):215-233.
[136] Ganesh A, Massoulié L, Towsley D. The effect of network topology on the spread of epidemics[C]∥ Proceeding of IEEE INFOCOM 2005, 2005: 1455-1466.
[137] O’Neill P D. A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods [J].Math Biosci, 2002, 180(1/2):103-114.
[138] Dorogovtsev S N, Mendes J F F. Evolution of networks[J].Adv Phys,2002, 51, 1079.
[139] Chakrabarti D,Wang Y, Wang C, et al. Epidemic thresholds in real network[J].ACM Trans Inf Syst Secur,2008, 10: 1.
[140] Mieghem P V, Omic J, Kooij R. Virus spread in network[C].IEEE ACMTrans Netw,2009, 17: 1.
[141] Ferreira S C,Castellano C,Pastor-Satorras R. Epidemic thresholds of the susceptible-infected-susceptible model on networks:a comparison of numerical and theoretical results[J].Phys Rev E,2012, 86(4): 041125.
[142] Cator E, Mieghem P V. Second-order mean-field susceptible-infected-susceptible epidemic threshold[J].Phys Rev E,2012, 85(5): 056111.
[143] Goltsev A V,Dorogovtsev S N,Oliveira J G, et al. Localization and spreading of diseases in complex networks[J].Phys Rev Lett,2012, 109(12): 128702.
[144] Lee H K,Shim P S,Noh J D. Epidemic threshold of the susceptible-infected-susceptible model on complex networks[J].Phys Rev E,2013, 87(6): 062812.
[145] Bogun M, Castellano C, Pastor-Satorras R. Nature of the epidemic threshold for the susceptible-infected-susceptible dynamicsin networks[J].Phys Rev Lett,2013, 111(6): 068701.
[146] Givan O,Schwartz N,Cygelberg A, et al. Predicting epidemic threshold on complex networks: Limitations of mean-field approaches[J].J Theor Biol,2011, 288, 21.
[147] Moreno Y,Pastor-Satorras R,Vespignani A. Epidemics outbreaks in complex heterogeneous networks[J].Eur Phys J B, 2002, 26: 521-529.
[148] Callaway D S, Newman M E J,Strogatz S H,et al.Network robustness and fragility: percolation on random graphs[J].Phys Rev Lett, 2000, 85, 5468-5471.
[149] Youssef M,Scoglio C. An individual-based approach to SIR epidemics in contact networks[J].J Theor Biol, 2011, 283.136-144.
[150] Prakash B A, Chakrabarti D, Faloutsos M, et al. Get the flu (or mumps) Check the eigenvalue![DB/OL].[2014-06-30].arxiv.org/abs/10040060.
[151] Zanette D H. Critical behavior of propagation on small-world networks[J].Phys Rev E, 2001, 64(5): 050901(R).
[152] Ben-Naim E,Krapivsky P L. Size of outbreaks near the epidemic threshold[J].Phys Rev E, 2004, 69(5): 050901(R).
[153] Ben-Naim E,Krapivsky P L. Scaling behavior of the threshold epidemics[J].Eur Phys J B, 2012, 85: 1.
[154] Kessler D A, Shnerb N M. Solution of an infection model near threshold[J].Phys Rev E, 2007, 76(1): 010901(R).
[155] Khalleque A, Sen P. The susceptible-infected-recovered model on a Euclidean network[J].J Phys A: Math Theor,2013, 46(9): 095007.
[156] Holme P. Extinction times of epidemic outbreaks in networks[J].PloS ONE,2013, 8: e84429.
[157] Hong H,Ha M,Park H. Finite-size scaling in complex networks[J].Phys Rev Lett, 2007, 98(25): 258701.
[158] Binder K, Heermann D W. Monte carlo simulation in statistical physics,[M].5th ed Berlin: Springer-Verlag, 2010.
[159] Ferreira S C,Ferreira R S, Castellano C, et al. Quasistationary simulations of the contact process on quenched networks[J].Phys Rev E, 2011, 84(6): 066102.
[160] Shu P, Wang W, Tang M, et al, Numerical identification of epidemic thresholds for susceptible-infected-recovered model on finite-size networks [J].Chaos, 2015, 25 (6), 063104.
[161] Wang W, Liu Q H, Zhong L F, et al, Predicting the epidemic threshold of the susceptible-infected-recovered model [DB/OL].[2014-06-30].www.nature.com/articles/srep24676.
[162] Li R, Wang W, Di Z. Effects of human dynamics on epidemic spreading in Cote d'Ivoire[DB/OL].[2014-06-30].arxiv.org/abs/160500899v1.
[163] Li R, Tang M, Hui P M. Epidemic spreading on multi-relational networks[J].Acta Phys Sin, 2013, 62(16): 168903.
[164] Xu E H W, Wang W, Xu C, et al, Suppressed epidemics in multirelational networks [J].Phys Rev E, 2015, 92 (2): 022812.
[165] Wang W, Tang M, Yang H, et al, Asymmetrically interacting spreading dynamics on complex layered networks [J].Sci Rep, 2014, 4: 5097.
[166] Liu Q H, Wang W, Tang M, et al, Impacts of complex behavioral responses on asymmetric interacting spreading dynamics in multiplex networks [J].Food & Nutrition Sciences, 2015,6(6):555-561.
[167] H Yang, M Tang, T Gross, Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes [J].Sci Rep. 2015, 5, 13122.
[168] Wang W, Tang M, Zhang H F, et al, Dynamics of social contagions with memory of nonredundant information [J].Phys Rev E, 2015, 92(1): 012820.
[169] Wang W, Tang M, Shu P, et al, Dynamics of social contagions with heterogeneous adoption thresholds: crossover phenomena in phase transition [J].New J Phys, 2016, 18(1): 013029.
[170] Wang W, Shu P, Zhu Y X, et al, Dynamics of social contagions with limited contact capacity [J], Chaos, 2015, 25(10): 103102.
[1] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[2] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[3] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[4] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[5] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[6] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[7] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[8] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[9] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[10] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[11] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[12] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[13] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[14] 杨文东, 黄依宁, 张生润. 基于多层复杂网络的RCEP国际航线网络特征分析[J]. 复杂系统与复杂性科学, 2023, 20(3): 60-67.
[15] 曾茜, 韩华, 李秋晖, 李巧丽. 基于分包的混合朴素贝叶斯链路预测模型[J]. 复杂系统与复杂性科学, 2023, 20(2): 10-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed