Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (1): 97-103    DOI: 10.13306/j.1672-3813.2025.01.013
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
含有等容胞腔的多智能体系统的能控性
刘萌萌1a,b, 纪志坚1a,b, 刘允刚2, 林崇1a
1.青岛大学 a.自动化学院;b.系统科学研究院,山东 青岛 266071;
2.山东大学控制科学与工程学院, 济南 250061
Controllability of Multi-agent Systems with Cells of Equal Capacity
LIU Mengmeng, JI Zhijian, LIU Yungang, LIN Chong
School of Automation, Qingdao University,Qingdao 266071, China
全文: PDF(1668 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究含有等容胞腔的多智能体系统的能控性问题,基于等容胞腔中的等势节点,区分了等势节点与自同构节点,发现等势节点是自同构节点的扩展。通过选取等势节点和非等势节点作为领导者,分析了系统的能控性,并提出了一种根据等容胞腔数量决定领导者数量的新方法。最后通过分析拉普拉斯矩阵,揭示了其秩与拓扑结构的之间的关系。研究结果表明,提出的领导者选择方式能有效提升系统的能控性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘萌萌
纪志坚
刘允刚
林崇
关键词 多智能体系统等价划分能控性领导者选择方法    
Abstract:This paper aims to investigate the controllability of multi-agent systems with cells of equal capacity. Firstly, based on the equipotential nodes within cells of equal capacity, a distinction is made between equipotential nodes and automorphic nodes, revealing that equipotential nodes extend automorphic nodes. Secondly, by selecting equipotential nodes and non-equipotential nodes as leaders, the controllability of the system is analyzed, and a novel leader selection method based on the number of cells of equal capacity is proposed. Finally, by analyzing the Laplacian matrix, the relationship between its rank and the topological structure is revealed. The research results demonstrate that the proposed leader selection method can effectively enhance the controllability of the system.
Key wordsmulti-agent system    equitable partition    controllability    leader selection method
收稿日期: 2023-03-15      出版日期: 2025-04-27
ZTFLH:  N941  
  TB3  
基金资助:国家自然科学基金(62373205,62033007);山东省泰山学者特聘教授人才支持计划(tstp20230624,ts20190930);山东省泰山学者攀登计划
通讯作者: 纪志坚(1973-),男,山东青岛人,博士,教授,主要研究方向为多智能体网络系统、多机器人系统的分布式协调控制、复杂网络的分析与控制等。   
作者简介: 刘萌萌(1997-),女,山东济宁人,硕士研究生,主要研究方向为多智能体网络分布式控制。
引用本文:   
刘萌萌, 纪志坚, 刘允刚, 林崇. 含有等容胞腔的多智能体系统的能控性[J]. 复杂系统与复杂性科学, 2025, 22(1): 97-103.
LIU Mengmeng, JI Zhijian, LIU Yungang, LIN Chong. Controllability of Multi-agent Systems with Cells of Equal Capacity[J]. Complex Systems and Complexity Science, 2025, 22(1): 97-103.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.01.013      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I1/97
[1] JI Z J, LIN H, CAO S B, et al. The complexity in complete graphic characterizations of multi-agent controllability[J]. IEEE Transactions on Cybernectics, 2021, 51(1):64-76.
[2] GUAN Y Q, JI Z J, ZHANG L, et al. Controllability of heterogeneous multi-agent systems under directed and weighted topology[J]. International Journal of Control, 2016, 89(5):1009-1024.
[3] GUO J H, JI Z J, LIU Y G, et al. Unified understanding and new results of controllability model of multi-agent systems[J]. International Journal of Robust and Nonlinear Control, 2022, 32(11):6330-6345.
[4] SUN Y S, JI Z J, LIU Y G, et al. On stabilizability of multi-agent systems[J]. Automatica, 2022, 144:110491.
[5] LIU B, PING Y Y, WU L C, et al. Controllability of discrete-time multi-agent systems based on absolute protocol with time-delays[J]. Neurocomputing, 2020, 409:316-328.
[6] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2):60-68.
WANG X, JI Z J. A new UAV formational algorithm based on MAS[J]. Complex Systems and Complexity Science, 2019, 16(2):60-68.[7] KLOTZ J R, KAN Z, SHEA J M, et al. Asymptotic synchronization of a leader-follower network of uncertain Euler-Lagrange systems[J]. IEEE Transactions on Control of Network Systems, 2015, 2(2):174-182.
[8] JI Z J, LIN H, YU H S. Leaders in multi-agent controllability under consensus algorithm and tree topology[J]. Systems and Control Letters, 2012, 61(9):918-925.
[9] TANNER H. On the controllability of nearest neighbor interconnections[J]. Proceedings of the 43rd IEEE Conference on Decision and Control. Atlantis, Paradise Island, Bahamas, 2004:2467-2472.
[10] JI M, EGERSTEDT M. A graph-theoretic characterization of controllability for multi-agent systems[C]. Proceedings of the 26th American Control Conference. New York, USA, 2007:4588-4593.
[11] JI Z J, WANG Z D, LIN H, et al. Interconnection topologies for multi-agent coordination under leader-follower framework[J]. Automatica, 2009, 45(12):2857-2863.
[12] RAHMANI A, JI M, MESBAHI M, et al. Controllability of multi-agent systems from a graph-theoretic perspective[J]. SIAM Journal on Control and Optimization, 2009, 48(1):162-186.
[13] MARTINI S, EGERSTEDT M, BICCHI A. Controllability analysis of multi-agent systems using relaxed equitable partitions[J]. International Journal of Systems, Control and Communications, 2010, 2(1/2/3): 100-121.
[14] ZHANG S, CAO M, CAMLIBEL M K. Upper and lower bounds for controllable subspaces of networks of diffusively coupled agents[J]. IEEE Transactions on Automatic Control, 2014, 59(3):745-750.
[15] AGUILAR C O, GHARESIFARD B. Almost equitable partition and new necessary conditions for network controllability[J]. Automatica, 2017(80):25-31.
[16] AGUILAR C O, GHARESIFARD B. Graph controllability classes for the laplacian leader-follower dynamics[J]. IEEE Transactions on Automatic Control, 2015, 60(6):1611-1626.
[17] PARLANGELI G, NOTARSTEFANO G. On the reachability and observability of path and cycle graph[J]. IEEE Transaction on Automatic Control, 2012, 57(3):743-748.
[18] LIU X Z, JI Z J. Controllability of multi-agent systems based on path and cycle graphs[J]. International Journal of Robust and Nonlinear Control, 2018, 28(1):296-309.
[19] KALMAN R E. Mathematical description of linear dynamical systems[J]. Journal of the Society for Industrial and Applied Mathematics, Series A: Control, 1963, 1(2):152-192.
[20] LOU Y H, JI Z J, QU J J. New results of multi-agent controllability under equitable partitions[J]. IEEE Access, 2020, 59:73523-73535.
[21] 张安慧, 张世杰, 陈健, 等. 多智能体系统能控性的图论刻画[J]. 控制与决策, 2011, 26(11):1621-1626.
ZHANG A H, ZHANG S J, CHEN J, et al. Graph theory characterization of controllability of multi-agent systems[J]. Control and Decision, 2011, 26(11):1621-1626.
[22] QU J J, JI Z J, SHI Y. The graphical conditions for controllability of multiagent systems under equitable partition[J]. IEEE Transactions on Cybernetics, 2021, 51(9):4661-4672.
[23] CARDOSO D M, DELORME C, RAMA P. Laplacian eigenvectors and eigenvalues and almost equitable partitions[J]. European Journal of Combinatorics, 2007, 28(3): 665-673.
[1] 毛子祥, 侯忠生. 动态事件触发下带有扰动的MASs无模型迭代二分一致控制[J]. 复杂系统与复杂性科学, 2025, 22(1): 138-145.
[2] 纪亚楠, 纪志坚. 无向拓扑下多智能体系统目标能控的图论条件[J]. 复杂系统与复杂性科学, 2024, 21(4): 13-20.
[3] 肖朋朋, 纪志坚, 刘允刚, 林崇. InSCC拓扑结构的能控性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 47-55.
[4] 张虎林, 李成铁, 王立夫. 边转换与增加对有向网络能控性的影响[J]. 复杂系统与复杂性科学, 2023, 20(3): 11-19.
[5] 杜向阳, 李伟勋, 陈增强, 张利民. 非线性耦合多智能体系统组编队跟踪控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 72-79.
[6] 冯万典, 彭世国, 曾梓贤. 脉冲控制下半马尔可夫随机MAS的均方一致性[J]. 复杂系统与复杂性科学, 2022, 19(3): 81-87.
[7] 张志伟, 纪志坚. 有向路径下的一类多智能体系统的能控性分析[J]. 复杂系统与复杂性科学, 2022, 19(2): 63-70.
[8] 国俊豪, 纪志坚. 基于NE结果的多智能体系统模型及其能控性[J]. 复杂系统与复杂性科学, 2021, 18(4): 50-57.
[9] 王潇, 纪志坚. 基于MAS的合作—竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
[10] 李英桢, 纪志坚, 刘帅, 杨仪龙. 含时滞多智能体系统的边动态二分一致性[J]. 复杂系统与复杂性科学, 2019, 16(4): 19-30.
[11] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
[12] 仉伟, 纪志坚, 渠继军. 基于领导者对称的多智能体系统可控性研究[J]. 复杂系统与复杂性科学, 2019, 16(2): 52-59.
[13] 王品, 姚佩阳. 具有不同输入时延的二阶多智能体系统一致性[J]. 复杂系统与复杂性科学, 2016, 13(4): 102-107.
[14] 李勃, 陈增强, 刘忠信, 张青. 含时延的多智能体系统的多静态领导者包容控制[J]. 复杂系统与复杂性科学, 2016, 13(2): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed