Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (2): 45-54    DOI: 10.13306/j.1672-3813.2025.02.006
  特邀专栏 本期目录 | 过刊浏览 | 高级检索 |
基于大语言模型的标准化文件生成方法研究
刘哲泽1,2, 郑楠1,3, 张宁4
1.中国科学院自动化研究所,北京 100190;
2.南开大学密码与网络空间安全学院,天津 300350;
3.中国科学院大学人工智能学院,北京 100049;
4.公安部鉴定中心,北京 100038
Standardizing Document Generation Based on Large Language Models
LIU Zheze1,2, ZHENG Nan1,3, ZHANG Ning4
1. Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Cryptography and Cyberspace Security, Nankai University, Tianjin 300350, China;
3. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China;
4.Institute of Forensic Science Ministry of Public Security, Beijing 100038, China
全文: PDF(2311 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了促进各行业的规范化发展,各领域都需要制定相应的标准化文件,例如国家标准、行业标准。这些标准化文件不仅为行业提供了统一的操作规范,还为相关方提供了明确的指导依据。中共中央、国务院在《国家标准化发展纲要》中明确指出,推进标准的数字化进程是实现行业现代化的重要举措。因此,开展标准化文件的自动化生成研究显得尤为重要。随着人工智能技术的迅速发展,尤其是大语言模型在文本生成任务中的突出表现,利用这些先进技术来实现标准化文件的自动化生成成为可能。基于此背景,提出了一种两阶段生成标准化文件的方案。该方案首先通过大模型生成标准化文件的大纲,然后在此基础上扩展生成完整的文档内容。通过结合上下文学习和检索增强生成等技术,该方法不仅能够生成高质量的文本,还显著提升了生成内容的准确性和专业性。为验证该方案的可行性,我们在自建的数据集上进行了系列实验,结果表明,该方法能够有效地生成符合行业标准的文档,具有良好的实用性和推广潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘哲泽
郑楠
张宁
关键词 大语言模型检索增强生成文本生成上下文学习    
Abstract:In order to promote the standardized development of various industries, corresponding standardizing documents need to be formulated in various fields, such as national standard and industry standard. These standardizing documents not only provide a unified operating standard for the industry, but also provide a clear guidance basis for relevant parties. The Central Committee of the CPC and the State Council clearly pointed out in the "the Outlines for the Development of National Standardization" that promoting the digitalization process of standard is an important measure to realize the modernization of the industry. Therefore, it is particularly important to carry out research on the automatic generation of standardizing documents. With the rapid development of artificial intelligence technology, especially the outstanding performance of large language models in text generation tasks, it is possible to use these advanced technologies to realize the automatic generation of standardizing documents. Based on this background, this paper proposes a two-stage scheme for generating standardizing documents. The scheme first generates the outline of the standardizing document through the large model, and then expands to generate the complete document content on this basis. By combining in-context learning and retrieval augmented generation techniques, this method can not only generate high-quality text, but also significantly improve the accuracy and professionalism of the generated content. In order to verify the feasibility of the scheme, we conducted a series of experiments on our self-built dataset, and the results show that the method can effectively generate documents that meet industry standards, and has good practicability and promotion potential.
Key wordslarge language models    retrieval augmented generation    text generation    in-context learning
收稿日期: 2025-03-28      出版日期: 2025-06-03
ZTFLH:  TP18  
  D918.9  
基金资助:国家重点研究发展计划项目(2023YFC3304104)
通讯作者: 郑楠(1984),女,山东青岛人,博士,副研究员,主要研究方向人工智能、数据挖掘。   
作者简介: 刘哲泽(2003),男,河南商丘人,本科,主要研究方向为数据挖掘,语言模型。
引用本文:   
刘哲泽, 郑楠, 张宁. 基于大语言模型的标准化文件生成方法研究[J]. 复杂系统与复杂性科学, 2025, 22(2): 45-54.
LIU Zheze, ZHENG Nan, ZHANG Ning. Standardizing Document Generation Based on Large Language Models[J]. Complex Systems and Complexity Science, 2025, 22(2): 45-54.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.02.006      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I2/45
[1] 中华人民共和国国务院. 中共中央国务院印发《国家标准化发展纲要》[EB/OL].[20250328]. https://www.gov.cn/gongbao/content/2021/content_5647347.htm.
State Council of the People′s Republic of China. The central committee of the cpc and the state council print and issue the outlines for the development of national standardization[EB/OL].[20250328]. https://www.gov.cn/gongbao/content/2021/content_5647347.htm.
[2] MI L, LI C R, DU P, et al. Construction and application of an automatic document generation model[C]. 2018 26th International Conference on Geoinformatics. Kunming, China, 2018: 16.
[3] 李若晨, 肖人彬. 基于改进狼群算法优化LSTM网络的舆情演化预测[J]. 复杂系统与复杂性科学, 2024, 21(1): 110.
LI R C, XIAO R B. Public opinion evolution prediction based on LSTM network optimized by an improved wolf pack algorithm[J]. Complex Systems and Complexity Science, 2024, 21(1): 110.
[4] 李炎,李宪,杨明业,等. 基于概率优化的神经网络模型组合算法[J]. 复杂系统与复杂性科学, 2022, 19(3): 104109.
LI Y, LI X, YANG M Y, et al. Neural network model combination algorithm based on probability optimization[J]. Complex Systems and Complexity Science, 2022, 19(3): 104109.
[5] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Advances in Neural Information Processing Systems. Long Beach, California, USA: Curran Associates, Inc, 2020: 18771901.
[6] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL].[20250328]. https://arxiv.org/abs/1810.04805.
[7] SHAO Y J, JIANG Y C, KANELL T, et al. Assisting in writing wikipedia-like articles from scratch with large language models[C]. Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Mexico: Association for Computational Linguistics, 2024, 1:62526278.
[8] LIN C H, CHENG P J. Legal documents drafting with fine-tuned pre-trained large language model[EB/OL].[20250328]. https://arxiv.org/abs/2406.04202.
[9] FAN A, GARDENT C. Generating biographies on wikipedia: the impact of gender bias on the retrieval-based generation of women biographies[C]. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin, Ireland: Association for Computational Linguistics, 2022,1: 85618576.
[10] HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-Efficient Transfer Learning for NLP[C]. Proceedings of the 36th International Conference on Machine Learning, ICML 2019. Long Beach, California, USA, 2019: 27902799.
[11] HU E J, SHEN Y L, WALLIS P, et al. LoRA: low-rank adaptation of large language models[C]. The Tenth International Conference on Learning Representations, ICLR 2022. Virtual Event, 2022: 113.
[12] 沈佳妮,曹剑峰,殷亦超,等. 基于大模型构建卫生标准文档规范性质控系统的研究[J]. 中国卫生信息管理杂志,2023, 20(6): 875880,896.
SHEN J N, CAO J F, YIN Y C, et al. Study on construction of a normative quality control system for health standard document based on large models[J]. Chinese Journal of Health Informatics and Management, 2023, 20(6): 875880,896.
[13] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]. Advances in Neural Information Processing Systems. Vancouver, BC, Canada: Curran Associates, Inc, 2020: 18771901.
[14] LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[C]. Advances in Neural Information Processing Systems. Vancouver, BC, Canada: Curran Associates, Inc, 2020: 94599474.
[15] BALEPUR N, HUANG J, CHANG K. Expository text generation: imitate, retrieve, paraphrase[C]. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Singapore: Association for Computational Linguistics, 2023: 1189611919.
[16] SEMNANI S, YAO V, ZHANG H, et al. WikiChat: stopping the hallucination of large language model chatbots by few-shot grounding on wikipedia[C]. Findings of the Association for Computational Linguistics: EMNLP 2023. Singapore: Association for Computational Linguistics. 2023: 23872413.
[17] MIN S, LYU X, HOLTZMAN A, et al. Rethinking the role of demonstrations: what makes in-context learning work?[C]. Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, 2022: 1104811064.
[18] FRÄNTI P, MARIESCU-ISTODOR R. Soft precision and recall[J]. Pattern Recognit Lett, 2023, 167: 115121.
[19] LIN C Y. ROUGE: A package for automatic evaluation of summaries[C]. Text Summarization Branches Out. Barcelona, Spain: Association for Computational Linguistics, 2004: 7481.
[1] 肖人彬, 邬博文, 赵嘉, 陈峙臻. 群体智能视角下的高等生物仿生计算:问题分析与综合评述[J]. 复杂系统与复杂性科学, 2025, 22(1): 1-10.
[2] 毛子祥, 侯忠生. 动态事件触发下带有扰动的MASs无模型迭代二分一致控制[J]. 复杂系统与复杂性科学, 2025, 22(1): 138-145.
[3] 杨俊起, 刘飞洋, 张宏伟. 基于改进蚁群算法的复杂环境路径规划[J]. 复杂系统与复杂性科学, 2024, 21(3): 93-99.
[4] 崔孝凯, 王庆芝, 刘其朋. 基于数据驱动的锂电池健康状态预测[J]. 复杂系统与复杂性科学, 2024, 21(3): 154-159.
[5] 刘婕, 孙更新, 宾晟. 基于改进KNN近邻实体的知识图谱嵌入模型[J]. 复杂系统与复杂性科学, 2024, 21(2): 30-37.
[6] 李若晨, 肖人彬. 基于改进狼群算法优化LSTM网络的舆情演化预测[J]. 复杂系统与复杂性科学, 2024, 21(1): 1-11.
[7] 张可琨, 曲大义, 宋慧, 戴守晨. 自动驾驶车辆换道博弈策略分析及建模[J]. 复杂系统与复杂性科学, 2023, 20(2): 60-67.
[8] 张梦真, 王庆芝, 刘其朋. 基于层次化可导航小世界网络改进的SeqSLAM算法[J]. 复杂系统与复杂性科学, 2023, 20(1): 105-110.
[9] 韩笑, 张梦真, 吴易, 崔孝凯, 邱长滨, 王庆芝, 刘其朋. 无人驾驶系统中执行器攻击检测算法设计[J]. 复杂系统与复杂性科学, 2022, 19(3): 88-93.
[10] 李炎, 李宪, 杨明业, 孙国庆. 基于概率优化的神经网络模型组合算法[J]. 复杂系统与复杂性科学, 2022, 19(3): 104-110.
[11] 孔珊, 仲昭林, 张纪会. 多路径选择变速双目标物流配送路径规划[J]. 复杂系统与复杂性科学, 2022, 19(1): 74-80.
[12] 朱锋, 刘其朋. 基于生成对抗网络的半监督图像语义分割[J]. 复杂系统与复杂性科学, 2021, 18(1): 23-29.
[13] 王潇, 纪志坚. 基于MAS的合作—竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
[14] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
[15] 郑伟博, 张纪会. 基于Nelder-Mead单纯形法的改进量子行为粒子群算法[J]. 复杂系统与复杂性科学, 2016, 13(2): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed