Abstract:Unifying hybrid theory network model (UHNTF) has more abundant topological characteristics and can be used to analyze and study many practical networks, so the research of multilayer supernetwork model based on UHNTF has theoretical value and practical significance. For this reason, UHNTF is combined with supernetwork feature in this paper. We proposed four kinds of supernetwork models, calculated and analyzed the relationship between hybrid ratios and topological characteristics. Some new features are found and the results can help to understand evolution of supernetwork model under different connecting pattern, which provide certain theoretical basis for research and potential application.
刘强, 方锦清, 李永. 基于统一混合网络理论框架的多层次超网络模型研究[J]. 复杂系统与复杂性科学, 2016, 13(1): 84-90.
LIU Qiang, FANG Jinqing, LI Yong. Multilayer Supernetwork Model Based on the Unifying Hybrid Network Theory Framework[J]. Complex Systems and Complexity Science, 2016, 13(1): 84-90.
[1] Berge C. Graphs and Hypergraph[M].New York:: Elsevier, 2008. [2] 王众托, 王志平. 超网络初探[J].管理学报, 2008, 5(1): 1-8. Wang Zhongtuo, Wang Zhiping. Elementary study of supernetworks[J].Chinese Journal of Management, 2008, 5(1): 1-8. [3] 漆玉虎, 郭进利.超网络研究[J].上海理工大学学报, 2013, 35(3): 227-239. Qi Yuhu, Guo Jinli. Brief review of supernetworks[J].University of Shanghai for Science and Technology, 2013, 35(3): 227-239. [4] 方锦清.大数据浪潮冲击下网络科学与工程面临的挑战论难题[J].自然杂志, 2013, 35(5): 345-354. Fang Jinqing. Network science and engineering faced with a challenge and developing opportunity under the wave impact of big data[J].Chinese Journal of Nature, 2013, 35(5): 345-354. [5] Nagurney A, Dong J. Supernetworks: Decision Making for the Information Age[M].Cheltenham: Edward Elgar Publishing, 2002. [6] 董琼, 马军. 供应链超网络均衡模型[J].上海理工大学学报, 2011, 33(3): 238-247. Dong Qiong, Ma Jun. Recent development on supply chain super network modeling[J].J. University of Shanghai for Science and Technology, 2011, 33(3): 238-247. [7] Nagurney A, Qian G Q. Fragile Networks: Identifying Vulnerabilities and Synergies in an Uncertain World[M].New York: John Wiley & Sons, INC, 2009. [8] Nagurney A, Qian G Q. A network efficiency measure with application to critical infrastructure networks[J].Journal of Global Optimization, 2008, 40: 261-275. [9] Nagurney A, Dong J. Supernetworks: Decision Making for the Information Age[M].Cheltenham: Edward Elgar Publishing, 2002. [10] Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J].Nature, 1998, 393: 440-442. [11] Barabási A L, Alber R. Emergence of scaling in random network[J].Science, 1999, 286: 509-512. [12] Barabási A L, Albert R, Jeong H. Mean-field theory for scale-free random networks[J].Phys A, 1999, 272: 173-187. [13] Newman M E J. Models of the small world[J].J Stat Phys, 2000, 101: 819-841. [14] 郭进利, 祝昕昀. 超网络中标度律的涌现[J].物理学报, 2014, 63(9): 090207. Guo Jinli, Zhu Xinjun. Emergence of scaling in hypernetworks[J].Acta Phys Sin, 2014, 63(9): 090207. [15] 胡枫,赵海兴, 马秀娟. 一种超网络演化模型构建及特性分析[J].中国科学: 物理学,力学,天文学, 2013, 43(1): 16-22. Hu Feng, Zhao Haixing, Ma Xiujuan. An evolving hypernetwork model and its properties[J].Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(1): 16-22. [16] Boccaletti S, Bianconi G, Criado R et al. The structure and dynamics of multilayer networks[J].Phys Rep, 2014, 544(1): 1-122. [17] Wang J W, Rong L L, Deng Q H, Zhang J Y. Evolving hypernetworkmodel[J].Eur Phys J B, 2010, 77: 493-498. [18] 刘强, 方锦清, 李永.三层超网络演化模型特性研究[J].复杂系统与复杂性科学, 2015, 12(2): 64-71. Liu Qiang, Fang Jinqing, Li Yiong. Some characteristics of three-layer supernetwork evolution model[J].Comp Syst Comp Sci, 2015, 12(2): 64-71. [19] 方锦清.驾驭强流束晕与探索网络科学[M].北京: 原子能出版社, 2008. [20] Fang J Q, Bi Q, Li Y. Toward a harmonious unifying hybrid model for any evolving complex networks[J].Advances in Complex Systems, 2007, 10(2): 117-141. [21] Fang J Q,Bi Q, Li Y, et al. Sensitivity of exponents of three-power-laws to hybrid ratio in weighted HUHPM[J].Chi Phys Lett 2007,24(1):279-282. [22] Fang J Q, Bi Q, Li Y, et al. A harmonious unifying preferential network model and its universal properties for complex dynamical network[J].Science in China Series G: 2007, 50(3): 379-396. [23] Fang J Q, Bi Q, Li Y. From a harmonious unifying hybrid preferential model toward a large unifying hybrid network model[J].International Journal of Modern Physics B, 2007, 21(30):5121-5142. [24] Fang J Q, Bi Q, Li Y. Advances in theoretical models of network science[J].Front Phys China, 2007, 1:109-124. [25] Fang J Q. Theoretical research progress in complexity of complex dynamical networks[J].Progress in Nature Science, 2007, 17(7): 761-774. [26] FangJ Q. Network complexity pyramid with five levels[J].Int J Systems, Control and Communications, 2009,1(4): 453-477.