Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (1): 84-90    DOI: 10.13306/j.1672-3813.2016.01.008
  本期目录 | 过刊浏览 | 高级检索 |
基于统一混合网络理论框架的多层次超网络模型研究
刘强, 方锦清, 李永
中国原子能科学研究院核技术应用研究所,北京 102413
Multilayer Supernetwork Model Based on the Unifying Hybrid Network Theory Framework
LIU Qiang, FANG Jinqing, LI Yong
Department of Nuclear Technology Application, China Institute of Atomic Energy, Beijing 102413, China
全文: PDF(1714 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 统一混合网络理论模型具有比较丰富的拓扑特性,能够应用于许多实际网络的研究分析,因此开展基于统一混合网络理论的多层次超网络模型研究具有理论价值和现实意义。为此,将统一混合网络理论和超网络的特性相结合,构建了4种类型超网络模型,计算分析了混合比与拓扑特性之间的关系,对统一混合网络理论模型与超网络模型的特性进行了比较,发现一些新特点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘强
方锦清
李永
关键词 统一混合网络理论超网络混合比拓扑特性    
Abstract:Unifying hybrid theory network model (UHNTF) has more abundant topological characteristics and can be used to analyze and study many practical networks, so the research of multilayer supernetwork model based on UHNTF has theoretical value and practical significance. For this reason, UHNTF is combined with supernetwork feature in this paper. We proposed four kinds of supernetwork models, calculated and analyzed the relationship between hybrid ratios and topological characteristics. Some new features are found and the results can help to understand evolution of supernetwork model under different connecting pattern, which provide certain theoretical basis for research and potential application.
Key wordsunifying hybrid network theoretical framwork    supernetwork    hybrid ratio    topological properties
收稿日期: 2015-07-28      出版日期: 2025-02-25
ZTFLH:  N94  
基金资助:国家自然科学基金面上项目(61174151)
作者简介: 刘强(1981- ),男,江西鄱阳人,硕士,高级工程师,主要研究方向为复杂网络和非线性同步控制。
引用本文:   
刘强, 方锦清, 李永. 基于统一混合网络理论框架的多层次超网络模型研究[J]. 复杂系统与复杂性科学, 2016, 13(1): 84-90.
LIU Qiang, FANG Jinqing, LI Yong. Multilayer Supernetwork Model Based on the Unifying Hybrid Network Theory Framework[J]. Complex Systems and Complexity Science, 2016, 13(1): 84-90.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.01.008      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I1/84
[1] Berge C. Graphs and Hypergraph[M].New York:: Elsevier, 2008.
[2] 王众托, 王志平. 超网络初探[J].管理学报, 2008, 5(1): 1-8.
Wang Zhongtuo, Wang Zhiping. Elementary study of supernetworks[J].Chinese Journal of Management, 2008, 5(1): 1-8.
[3] 漆玉虎, 郭进利.超网络研究[J].上海理工大学学报, 2013, 35(3): 227-239.
Qi Yuhu, Guo Jinli. Brief review of supernetworks[J].University of Shanghai for Science and Technology, 2013, 35(3): 227-239.
[4] 方锦清.大数据浪潮冲击下网络科学与工程面临的挑战论难题[J].自然杂志, 2013, 35(5): 345-354.
Fang Jinqing. Network science and engineering faced with a challenge and developing opportunity under the wave impact of big data[J].Chinese Journal of Nature, 2013, 35(5): 345-354.
[5] Nagurney A, Dong J. Supernetworks: Decision Making for the Information Age[M].Cheltenham: Edward Elgar Publishing, 2002.
[6] 董琼, 马军. 供应链超网络均衡模型[J].上海理工大学学报, 2011, 33(3): 238-247.
Dong Qiong, Ma Jun. Recent development on supply chain super network modeling[J].J. University of Shanghai for Science and Technology, 2011, 33(3): 238-247.
[7] Nagurney A, Qian G Q. Fragile Networks: Identifying Vulnerabilities and Synergies in an Uncertain World[M].New York: John Wiley & Sons, INC, 2009.
[8] Nagurney A, Qian G Q. A network efficiency measure with application to critical infrastructure networks[J].Journal of Global Optimization, 2008, 40: 261-275.
[9] Nagurney A, Dong J. Supernetworks: Decision Making for the Information Age[M].Cheltenham: Edward Elgar Publishing, 2002.
[10] Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J].Nature, 1998, 393: 440-442.
[11] Barabási A L, Alber R. Emergence of scaling in random network[J].Science, 1999, 286: 509-512.
[12] Barabási A L, Albert R, Jeong H. Mean-field theory for scale-free random networks[J].Phys A, 1999, 272: 173-187.
[13] Newman M E J. Models of the small world[J].J Stat Phys, 2000, 101: 819-841.
[14] 郭进利, 祝昕昀. 超网络中标度律的涌现[J].物理学报, 2014, 63(9): 090207.
Guo Jinli, Zhu Xinjun. Emergence of scaling in hypernetworks[J].Acta Phys Sin, 2014, 63(9): 090207.
[15] 胡枫,赵海兴, 马秀娟. 一种超网络演化模型构建及特性分析[J].中国科学: 物理学,力学,天文学, 2013, 43(1): 16-22.
Hu Feng, Zhao Haixing, Ma Xiujuan. An evolving hypernetwork model and its properties[J].Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(1): 16-22.
[16] Boccaletti S, Bianconi G, Criado R et al. The structure and dynamics of multilayer networks[J].Phys Rep, 2014, 544(1): 1-122.
[17] Wang J W, Rong L L, Deng Q H, Zhang J Y. Evolving hypernetworkmodel[J].Eur Phys J B, 2010, 77: 493-498.
[18] 刘强, 方锦清, 李永.三层超网络演化模型特性研究[J].复杂系统与复杂性科学, 2015, 12(2): 64-71.
Liu Qiang, Fang Jinqing, Li Yiong. Some characteristics of three-layer supernetwork evolution model[J].Comp Syst Comp Sci, 2015, 12(2): 64-71.
[19] 方锦清.驾驭强流束晕与探索网络科学[M].北京: 原子能出版社, 2008.
[20] Fang J Q, Bi Q, Li Y. Toward a harmonious unifying hybrid model for any evolving complex networks[J].Advances in Complex Systems, 2007, 10(2): 117-141.
[21] Fang J Q,Bi Q, Li Y, et al. Sensitivity of exponents of three-power-laws to hybrid ratio in weighted HUHPM[J].Chi Phys Lett 2007,24(1):279-282.
[22] Fang J Q, Bi Q, Li Y, et al. A harmonious unifying preferential network model and its universal properties for complex dynamical network[J].Science in China Series G: 2007, 50(3): 379-396.
[23] Fang J Q, Bi Q, Li Y. From a harmonious unifying hybrid preferential model toward a large unifying hybrid network model[J].International Journal of Modern Physics B, 2007, 21(30):5121-5142.
[24] Fang J Q, Bi Q, Li Y. Advances in theoretical models of network science[J].Front Phys China, 2007, 1:109-124.
[25] Fang J Q. Theoretical research progress in complexity of complex dynamical networks[J].Progress in Nature Science, 2007, 17(7): 761-774.
[26] FangJ Q. Network complexity pyramid with five levels[J].Int J Systems, Control and Communications, 2009,1(4): 453-477.
[1] 周斌, 马福祥, 高淑洁, 马秀娟, 李明杰. 超边内部结构对无标度超网络鲁棒性的影响[J]. 复杂系统与复杂性科学, 2024, 21(3): 1-8.
[2] 吴英晗, 李明达, 胡枫. 基于熵的多属性决策超网络重要节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 40-46.
[3] 周丽娜, 李发旭, 巩云超, 胡枫. 基于K-shell的超网络关键节点识别方法[J]. 复杂系统与复杂性科学, 2021, 18(3): 15-22.
[4] 王志平, 王佳. 基于超网络的舆论演化动态模型[J]. 复杂系统与复杂性科学, 2021, 18(2): 29-38.
[5] 彭华涛, 邱子恒. 超网络视角的精准创业扶贫资源拼凑机理研究[J]. 复杂系统与复杂性科学, 2020, 17(4): 48-57.
[6] 徐开俊, 吴佳益, 杨泳, 梁磊. 中国航线网络结构的多层性分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 39-46.
[7] 胡枫, 刘猛, 赵静, 雷蕾. 蛋白复合物超网络特性分析及应用[J]. 复杂系统与复杂性科学, 2018, 15(4): 31-38.
[8] 种鹏云, 尹惠. 基于复杂网络的危险品道路运输网络优化策略研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 56-65.
[9] 李甍娜, 郭进利, 卞闻, 常宁戈, 肖潇, 陆睿敏. 网络视角下的唐诗[J]. 复杂系统与复杂性科学, 2017, 14(4): 66-71.
[10] 崔琼, 李建华, 冉淏丹, 南明莉. 任务流驱动的指挥信息系统动态超网络模型[J]. 复杂系统与复杂性科学, 2017, 14(3): 58-67.
[11] 廖日卿. 基于超网络的海关物流监控风险管理方法优化研究[J]. 复杂系统与复杂性科学, 2017, 14(2): 39-45.
[12] 索琪, 郭进利,. “随机”与“择优”——超网络演化的内在驱动力[J]. 复杂系统与复杂性科学, 2016, 13(4): 51-55.
[13] 杨迎辉, 李建华, 王刚, 南明莉. 基于超网络的作战信息流转建模及特性分析[J]. 复杂系统与复杂性科学, 2016, 13(3): 8-18.
[14] 索琪, 郭进利, 王福红. 电视节目竞争关系的超网络分析[J]. 复杂系统与复杂性科学, 2016, 13(3): 33-39.
[15] 张婷, 米传民. 基于超网络的互联网金融均衡问题研究[J]. 复杂系统与复杂性科学, 2016, 13(2): 36-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed