Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (4): 102-107    DOI: 10.13306/j.1672-3813.2016.04.014
  本期目录 | 过刊浏览 | 高级检索 |
具有不同输入时延的二阶多智能体系统一致性
王品, 姚佩阳
空军工程大学信息与导航学院,西安 710077
Consensus of Second-Order Multi-Agent Systems with Multiple Input Delays
WANG Pin, YAO Peiyang
Information and Navigation College,Air Force Engineering University. Xi’an 710077, China
全文: PDF(884 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 研究了具有不同时变输入时延的二阶连续多智能体系统的一致性问题。首先,通过变量转换,将系统的收敛性问题转化为误差系统的稳定问题;然后,通过对系统进行变换,将二阶系统稳定性问题转换为等价系统的稳定性问题。通过构造李雅普诺夫函数,基于线性矩阵不等式(LMI)的方法,给出在无向固定拓扑条件下,系统达到一致的充分条件。最后,仿真实例证明了结果的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王品
姚佩阳
关键词 一致性多智能体系统不同时变输入时延LMI    
Abstract:A consensus problem is discussed about the second-order multi-agent system with multiple time-varying input delays.Firstly,by variable transformution,the convergence problem of second-order multi-agent systems is converted into the stability problem of an error system.Then,by system transformution,the stability problem of the second-order system is converted into the stability problem of the equivalent system. Based on linear matrix inequalities (LMI),by constructing Lyapunov-Krasovskii functions,sufficient conditions of consensus in undirected networks are obtained. At last,examples are given to demonstrate the effictiveness of the conclusion.
Key wordsconsensus    multi-agent systems    multiple time-varying input delays    linear matrix inequalities
收稿日期: 2015-09-28      出版日期: 2025-02-25
ZTFLH:  TP27  
基金资助:国家自然科学基金(61273048)
作者简介: 王品(1992-),男,山东莱阳人,硕士研究生,主要研究方向为有人/无人协同、多智能体系统一致性。
引用本文:   
王品, 姚佩阳. 具有不同输入时延的二阶多智能体系统一致性[J]. 复杂系统与复杂性科学, 2016, 13(4): 102-107.
WANG Pin, YAO Peiyang. Consensus of Second-Order Multi-Agent Systems with Multiple Input Delays[J]. Complex Systems and Complexity Science, 2016, 13(4): 102-107.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.04.014      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I4/102
[1] Olfati-Saber R ,Fax J A,Murry R M.Consensus and cooperation in networked multi-agent systems[C].The Proceedings of the IEEE,2007.
[2] Sun Y G,Wang L.Consensus of multi-agent systems in directed networks with nonuniform time-varying delays[J].IEEE Transactions on Automatic Control,2009,54(7):1607-1613.
[3] Meng Z Y,Ren W,Cao Y C.Leaderless and leader-following consensus with communication and input delays under a directed network topology[J].IEEE Trans on System, 2010,41(1):75-88.
[4] Tian Y P,Liu C L.Consensus of multi-agent systems with deverse input and communication delays[J].IEEE Trans on Automatic Control,2008,53(9):2122-2128.
[5] 梁有明,刘成林.具有通信时延和输入时延的一阶多自主体的一致性[J].信息与控制,2012,41(1):14-21.
Liang Youming,Liu Chenglin,Liu Fei.Consensus problem of first-order multi-agent systems with communication delay and input delay[J].Information and Control,2012,41(1):14-21.
[6] 曾耀武,冯伟.具有时滞和不确定性多智能体鲁棒一致性研究[J].复杂系统与复杂性科学,2013,10(3):75-80.
Zeng Yaowu,Feng Wei.Robust consensus analysis of multi-agent systems with both time-delay and uncertainty[J].Complex Systems and Complexity Science2013,10(3):75-80.
[7] Saber R O,Murray R.Consensus problems in networks of agents with switching topology and time-delays[J].IEEE Trans on Automatic Control,2004,49(9):1520-1533.
[8] Bliman P A,Trecate G F.Average consensus problems in networks of agents with delayed communications[J].Automatica,2008,44(8):1985-1995.
[9] Sun Y G,Wang L,Me G M.Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays[J].Systems and Control Letters,2008,57(2):175-183.
[10] Tang Z J, Huang T Z,Shao J L.Consensus of second-order multi-agent systems with nonuniform time-varing delays[J].Neuro Computing,2012,97:410-414.
[11] Boyd B,Ghaoui L E,Feron E,et al.Linear Matrix Inequalities in System and Control Theory[M].Philadelphia: SIAM,1994.
[12] Sun Y G,Wang L,Xie G M.Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays[J].Systems and Control Letters,2008,57( 1): 175-183.
[13] Sun Y G,Wang L,Xie G M.Stabilization of switched linear systems with multiple time-varying delays[C]//Proceedings of the 45th IEEE Conference on Decision and Control. San Diego,USA,2006: 4069-4074.
[1] 纪亚楠, 纪志坚. 无向拓扑下多智能体系统目标能控的图论条件[J]. 复杂系统与复杂性科学, 2024, 21(4): 13-20.
[2] 肖朋朋, 纪志坚, 刘允刚, 林崇. InSCC拓扑结构的能控性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 47-55.
[3] 杜向阳, 李伟勋, 陈增强, 张利民. 非线性耦合多智能体系统组编队跟踪控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 72-79.
[4] 冯万典, 彭世国, 曾梓贤. 脉冲控制下半马尔可夫随机MAS的均方一致性[J]. 复杂系统与复杂性科学, 2022, 19(3): 81-87.
[5] 张志伟, 纪志坚. 有向路径下的一类多智能体系统的能控性分析[J]. 复杂系统与复杂性科学, 2022, 19(2): 63-70.
[6] 国俊豪, 纪志坚. 基于NE结果的多智能体系统模型及其能控性[J]. 复杂系统与复杂性科学, 2021, 18(4): 50-57.
[7] 王潇, 纪志坚. 基于MAS的合作—竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
[8] 李英桢, 纪志坚, 刘帅, 杨仪龙. 含时滞多智能体系统的边动态二分一致性[J]. 复杂系统与复杂性科学, 2019, 16(4): 19-30.
[9] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
[10] 仉伟, 纪志坚, 渠继军. 基于领导者对称的多智能体系统可控性研究[J]. 复杂系统与复杂性科学, 2019, 16(2): 52-59.
[11] 李宗刚, 郭志龙, 石慧荣, 谢广明. 基于分布式估计与模糊控制的多机器鱼编队控制[J]. 复杂系统与复杂性科学, 2016, 13(3): 40-46.
[12] 李勃, 陈增强, 刘忠信, 张青. 含时延的多智能体系统的多静态领导者包容控制[J]. 复杂系统与复杂性科学, 2016, 13(2): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed