Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (1): 66-74    DOI: 10.13306/j.1672-3813.2017.01.010
  本期目录 | 过刊浏览 | 高级检索 |
牛熊市视角下股票关联网络动态拓扑结构研究
谢赤, 边慧东, 王纲金
湖南大学工商管理学院,长沙 410082
Dynamic Topology of Stock Correlation Networks from the Bull and Bear Perspective: a Case of Shanghai 50 Index
XIE Chi, BIAN Huidong, WANG Gangjin
College of Business Administration of Hunan University, Changsha 410082, China
全文: PDF(1655 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 以2005-01-04至2008-12-31上证50指数成分股数据为样本,将其划分为熊市I、牛市和熊市II等3个阶段,运用最小生成树、分层结构树以及主要拓扑指标研究股票市场处于不同阶段下的关联网络动态拓扑结构。实证结果表明:股票市场间存在行业聚集效应,并且这种效应随着时间的推移越来越显著;在股票市场关联网络拓扑结构中,制造业在牛市时处于绝对的中心地位,并会持续到熊市;金融保险业和制造业中的钢铁制造业的内部股票始终保持着很高的关联度,一些子母公司和交叉控股的股票间也关系密切。此外,主要关联网络指标显示,股票市场所形成的关联网络结构在牛市时更紧密,但是牛市的市场结构要比熊市差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢赤
边慧东
王纲金
关键词 股票市场牛市熊市复杂网络最小生成树    
Abstract:Daily data collected from Shanghai 50 Index constituent stocks from January 4, 2005 to December 31, 2008 is divided into three stages: bear I, bull and bear II. We study dynamic topology of stock correlation networks in each stage by using the minimal spannin tree (MST), hierarchical tree (HT) and main network property measures. The results show that: Industrial clustering exists and becomes more and more obvious in stock market; Manufacturing industry turns into the absolute center in bull market, which lasts until bear II market; Internal stocks of finance & insurance industry and steelmaking industry always maintain a high correlation, and the stocks of parent company and subsidiary and the stocks of the cross holdings companies are also close to each other; In addition, the main network property measures reveal that the structure of the stock market’s correlation network is closer but worse in bull market than in bear markets.
Key wordsstock market    bull market    bear market    complex network    minimal spanning tree
收稿日期: 2015-04-27      出版日期: 2025-02-24
ZTFLH:  N94  
  F832  
基金资助:国家自然科学基金(71373072);国家自然科学基金创新研究群体科学基金(71221001);高等学校博士学科点专项科研基金(20130161110031)
作者简介: 谢赤(1963-),男,湖南株洲人,博士,教授,主要研究方向为金融工程与风险管理、复杂金融网络、金融物理学、金融复杂性。
引用本文:   
谢赤, 边慧东, 王纲金. 牛熊市视角下股票关联网络动态拓扑结构研究[J]. 复杂系统与复杂性科学, 2017, 14(1): 66-74.
XIE Chi, BIAN Huidong, WANG Gangjin. Dynamic Topology of Stock Correlation Networks from the Bull and Bear Perspective: a Case of Shanghai 50 Index[J]. Complex Systems and Complexity Science, 2017, 14(1): 66-74.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.01.010      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I1/66
[1] Mantegna R N. Hierarchical structure in financial markets[J].The European Physical Journal B, 1999, 11(1): 193-197.
[2] Tabak B M, Serra T R, Cajueiro D O. Topological properties of stock market networks: the case of Brazil[J].Physica A, 2010, 389(16): 3240-3249.
[3] Kwapień J, Gworek S, Drod S, et al. Analysis of a network structure of the foreign currency exchange market[J].Journal of Economic Interaction and Coordination, 2009, 4(1): 55-72.
[4] Tabak B M, Serra T R, Cajueiro D O. The expectation hypothesis of interest rates and network theory: the case of Brazil[J].Physica A, 2009, 388(7): 1137-1149.
[5] Tabak B M, Serra T R, Cajueiro D O. Topological properties of commodities networks[J].The European Physical Journal B, 2010, 74(2): 243-249.
[6] Wang G J, Xie C. Correlation structure and dynamics of international real estate securities markets: a network perspective[J].Physica A, 2015, 424(8): 176-193.
[7] Matesanz D, Ortega G J. Sovereign public debt crisis in Europe. a network analysis[J].Physica A, 2015, 436(20):756-766.
[8] Zhong T, Peng Q, Wang X, et al. Novel indexes based on network structure to indicate financial market[J].Physica A:Statistical Mechanics &Its Applications,2015,443:583-594.
[9] 黄飞雪, 赵昕, 侯铁珊. 基于最小生成树的上证50指数分层结构[J].系统工程, 2009, 27(1): 71-76.
Huang FeiXue, Zhao Xin, Hou TieShan. Index hierarchical structure of Shanghai 50 stock based on minimum spanning tree[J].Systems Engineering, 2009, 27(1): 71-76.
[10] Huang W Q, Zhuang X T, Yao S. A network analysis of the Chinese stock market[J].Physica A, 2009, 388(14): 2956-2964.
[11] 尹群耀, 何建敏, 卞曰瑭, 等. 基于STSA的中国股市的聚集效应研究——以上证50指数为例[J].系统工程, 2013, 31(1): 10-17.
Yin QunYao, He JianMin, Bian YueTang, et al. Aggregation effect of the China stock market based on STAT method: Take SSE 50 Index as an example[J].Systems Engineering, 2013, 31(1): 10-17.
[12] Mai Y, Chen H, Meng L. An analysis of the sectorial influence of CSI300 stocks within the directed network[J].Physica A, 2014, 396(2): 235-241.
[13] Tu C. Cointegration-based financial networks study in Chinese stock market[J].Physica A, 2014, 402(10): 245-254.
[14] Yang R, Li X, Zhang T. Analysis of linkage effects among industry sectors in China’s stock market before and after the financial crisis[J].Physica A, 2014, 411(19): 12-20.
[15] Chen H, Mai Y, Li S P. Analysis of network clustering behavior of the Chinese stock market[J].Physica A, 2014, 414(22): 360-367.
[16] 吴翎燕, 韩华, 宋宁宁. 基于相关系数和最佳阈值的股票网络模型构建[J].复杂系统与复杂性科学, 2013, 10(4): 49-55.
Wu LingYan, Han Hua, Song NingNing. The construction of stock network model based on correlation coefficient and optimal threshold[J].Complex Systems and Complexity Science, 2013, 10(4): 49-55.
[17] John Y C. The new palgrave dictionary of money and finance[J].Journal of Economic Literature, 1994, 32(2): 667-673.
[18] Lindahl-Stevens M. Redefining bull and bear markets[J].Financial Analysts Journal, 1980, 36(6): 76-77.
[19] 王林, 张婧婧. 复杂网络的中心化[J].复杂系统与复杂性科学, 2006, 3(1): 13-20.
Wang Lin, Zhang JingJing. Centralization of complex networks[J].Complex Systems and Complexity Science, 2006, 3(1): 13-20.
[20] Wang G J, Xie C, Han F, et al. Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree[J].Physica A, 2012, 391(16): 4136-4146.
[21] Onnela J P, Chakraborti A, Kaski K, et al. Dynamics of market correlations: taxonomy and portfolio analysis[J].Physical Review E, 2003, 68(5): 056110.
[22] Kwapien J, Gworek S, Drozdz S. Structure and evolution of the foreign exchange networks[J].Acta Physica Polonica B, 2009, 40(1):175-194.
[23] Onnela J P, Chakraborti A, Kaski K, et al. Dynamic asset trees and portfolio analysis[J].The European Physical Journal B, 2002, 30(3): 285-288.
[1] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[2] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[3] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[4] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[5] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[6] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[7] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[8] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[9] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[10] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[11] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[12] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[13] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[14] 杨文东, 黄依宁, 张生润. 基于多层复杂网络的RCEP国际航线网络特征分析[J]. 复杂系统与复杂性科学, 2023, 20(3): 60-67.
[15] 曾茜, 韩华, 李秋晖, 李巧丽. 基于分包的混合朴素贝叶斯链路预测模型[J]. 复杂系统与复杂性科学, 2023, 20(2): 10-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed