Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (2): 75-81    DOI: 10.13306/j.1672-3813.2017.02.011
  本期目录 | 过刊浏览 | 高级检索 |
节日营销阵发效应下供应链网络结构稳定性分析
孙红英1,2, 田宇2
1.仲恺农业工程学院计算科学学院,广州 510225;
2.中山大学管理学院,广州 510275
Stability Analysis of Supply Chain Network Structure Under Created Holiday Marketing
SUN Hongying1,2, TIAN Yu2
1. College of Computational Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
2. School of Business, Sun Yat-sen University, Guangzhou 510275, China
全文: PDF(863 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 经过数据分析,发现在节日营销中顾客对商品的需求数量往往因节日的刺激而呈现明显的阵发效应,即非线性、间歇性批量增长。为研究这种需求阵发效应下供应链网络结构的稳定性,在Poisson模型的基础上,将供应链网络节点数的增长视为节点数批量到达,构造了新的网络节点数批量到达且呈指数增长的Poisson供应链网络模型,并利用平均场方法解析计算了节点的增长动态性特征。解析结果表明,在电商节日营销中,供应链网络度分布是稳定的,稳态度分布服从指数为1的幂律分布,并且非线性增长方式对于网络平均度分布的影响差异较小。模型和相关结论对电商企业在正确运用节日营销手段的同时,防范网络崩溃风险具有十分重要的启示。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙红英
田宇
关键词 节日营销供应链网络批量到达稳定性    
Abstract:In the past, some large electricity providers for marketing through traditional festivals, but the effect gradually achieve Extreme. 2009, Jack Ma created “Nov.11” and named “Singles day” and carried out marketing. The results amazed us. Different from the traditional festivals, the created holiday marketing is new trend and new field to research. This paper constructs a network of nodes and showed a batch arrival Poisson supply chain network model based on the exponential growth of the Poisson network model and analyze the nodes growth dynamic with a mean-field approach. The analysis shows the power-law exponent on stabilization distribution of attitudeis 1,furthermore, the numerical results and the theoretical values are in good agreement.
Key wordsholiday marketing    supply chain network    batch arrival    stability
收稿日期: 2014-11-10      出版日期: 2025-02-25
ZTFLH:  F274  
  N947  
基金资助:国家自然科学基金(71172162,71462008)
通讯作者: 田宇(1968-),男,湖北荆州人,博士,教授,主要研究方向为物流管理、渠道管理。   
作者简介: 孙红英(1979-),女,山东菏泽人,博士研究生,副教授,主要研究方向为供应链管理。
引用本文:   
孙红英, 田宇. 节日营销阵发效应下供应链网络结构稳定性分析[J]. 复杂系统与复杂性科学, 2017, 14(2): 75-81.
SUN Hongying, TIAN Yu. Stability Analysis of Supply Chain Network Structure Under Created Holiday Marketing[J]. Complex Systems and Complexity Science, 2017, 14(2): 75-81.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.02.011      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I2/75
[1] Oliveira JG,Barabasi A L.Human dynamics:Darwin and Einstein correspondence pattern[J].Nature,2005,437:1251-1253.
[2] 姚灿中.物流系统出库行为动力学的统计特征分析[J].复杂系统与复杂性科学,2014, 11(4): 80-86.
Yao Canzhong.The study of behavior dynamics of large logistics system based on time scaling law[J].Complex Systems and Complexity Science,2014, 11(4): 80-86.
[3] 中国新闻网.外媒:当美国”黑色星期五”遇上中国”双十一”[DB/OL].[2014-12-01].http://www.chinanews.com/hb/2014/12-01/6832027.shtml.
Chinanews.com.Foreign media: when the United States Black Friday met China double eleven.[DB/OL].[2014-12-01].http://www.chinanews.com/hb/2014/12-01/6832027.shtml.
[4] 张成海.供应链管理技术与方法[M].北京:清华大学出版社,2002.
[5] 发商机网. 2014天猫、淘宝双十一数据直播:2014年双十一交易额571亿[DB/OL].[2014-11-11].http://www.fashangji.com/news/show/3205/.
fashangji.com.2014 tmall, taobao dual eleven data broadcast: 2014 double eleven transaction volume of 57 1billions[DB/OL].[2014-11-11].http://www.fashangji.com/news/show/3205/.
[6] Choi T Y,Dooley K J,Rungtusanatham M.Supply networks and complex adaptive systems: control versus emergence[J].Journal of Operations Management, 2001(3):351-366.
[7] 郭进利.供应链型网络中双幂律分布模型[J].物理学报, 2006, 55(8):3916-3921.
Guo Jinli.The bilateral power-law distribution model of supply chain networks[J].ACTA Physica Sinica, 2006, 55(8):3916-3921.
[8] 郭进利.有向复杂网络的Poisson模型[J].上海理工大学学报, 2006, 28(3):227-232.
Guo Jinli.Poisson model of directed complex networks[J].J University of Shanghai for Science and Technology, 2006, 28(3):227-232.
[9] 郭进利.老节点间有相互连接的供应链型有向网络[J].系统管理学报, 2007, 16(3):337-344.
Guo Jinli.Supply chain type directed networks between old nodes linked mutually[J].Journal of Systems & Management, 2007, 16(3):337-344.
[10] 杨琴, 陈云.基于泊松过程的供应链复杂网络模型[J].系统工程, 2012, 30(9):57-62.
Yang Qin,Chen Yun.Supply chain complex network model based on poisson process[J].Systems Engineering,2012, 30(9):57-62.
[11] 杨琴, 姚娟.基于TDE模型的供应链有向含权网络[J].系统管理学报, 2013, 22(5):640-646.
Yang Qin,Yao Juan.Weighted directed supply chain network based on TDE model[J].Journal of Systems &Management,2013, 22(5):640-646.
[12] 姚灿中,郑旭洲.物流基地出库行为动力学的分形特征分析[J].计算机应用研究,2014, 31(9):2613-2616.
Yao Canzhong.Zheng Xuzhou.The study of behavior dynamics of large logistics system based on time scaling law[J].Application Research of Computers,2014, 31(9):2613-2616.
[13] 李季, 汪秉宏, 蒋品群, 等.节点数加速增长的复杂网络生长模型[J].物理学报, 2006, 55(8):4051-4057.
Li Ji,Wang Binghong,Jiang Pinqun,et al.Growing complex network model with acceleratingly increasing number of nodes[J].ACTA Physica Sinica,2006, 55(8):4051-4057.
[14] 郭进利, 汪丽娜.幂律指数在1与3之间的一类无标度网络[J].物理学报, 2007,(10):5635-5639.
Wang Lina,Guo Jinli.Scale-free networks with the power-law exponent between1and 3[J].ACTA Physica Sinica,2007,(10):5635-5639.
[15] Ross S. M.. Stochastic Processes[M].New York: John Wiley &Sons Inc, 1991.
[16] 何声武.更新过程理论[M].上海: 华东师范大学出版社, 1990.
[17] 中金在线网.“双十一”电商大战小网店为何不赚钱[DB/OL].[2012-11-20].http://roll.sohu.com/20121120/n358146751.shtml.
CnFol.com.Why the small online shops can not win in the double eleven[DB/OL].[2012-11-20].http://roll.sohu.com/20121120/n358146751.shtml.
[18] 王品辉, 龚里.中国快递行业几大阵营与格局报告[DB/OL].[2016-03-31].http://www.56products.com/News/2016-3-31/F9HDFDBB4KD4C841116.html
Wang Pinhui,Gong Li.China express industry several camps and pattern Report[DB/OL].[2016-03-31].http://www.56products.com/News/2016-3-31/F9HDFDBB4KD4C841116.html
[19] CNNIC. 2015年双十一网民参与度达57.7%[DB/OL].[2015-11-25].http://www.askci.com/news/chanye/2015/11/25/105317ut17.shtml.
CNNIC.2015 double eleven Internet users to participate in up to 57.7%[DB/OL].[2015-11-25].http://www.askci.com/news/chanye/2015/11/25/105317ut17.shtml.
[1] 彭巍, 胡远航, 龚壮辉. 生态视角的复杂产品协同设计网络稳定性研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 88-94.
[2] 潘弘杰, 范宏. 考虑网络结构的影子银行与银行系统稳定性研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 41-48.
[3] 田英楠, 王嘉琪, 张新立. 不同理性预期下量子库诺特模型的动态演化分析[J]. 复杂系统与复杂性科学, 2021, 18(3): 45-50.
[4] 卢冬冬, 吴洁, 刘鹏, 盛永祥. 网络稳定性研究——以AngularJS为例[J]. 复杂系统与复杂性科学, 2020, 17(3): 38-46.
[5] 钱晓东, 杨贝. 基于复杂网络模型的供应链企业合作演化研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 1-10.
[6] 朱伟, 陈坤, 王谦, 朱弘钊. 基于自适应滑模控制的分数阶蔡氏电路系统动力学分析与控制[J]. 复杂系统与复杂性科学, 2018, 15(2): 88-94.
[7] 陈思谕, 邹艳丽, 王瑞瑞, 谭华珍. 电网输电线路耦合强度分配策略研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 45-53.
[8] 汪慕峰, 韦笃取, 罗晓曙, 张波, 屈莉莉. 基于Lyapunov稳定性理论的星型耦合电动机网络的混沌同步[J]. 复杂系统与复杂性科学, 2017, 14(2): 26-30.
[9] 张斐, 吴庆初, 曾广洪. 网络上具有一般直接免疫的SIRS传染病模型分析[J]. 复杂系统与复杂性科学, 2017, 14(1): 81-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed