Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (4): 61-68    DOI: 10.13306/j.1672-3813.2023.04.009
  本期目录 | 过刊浏览 | 高级检索 |
产业部门间间接能源流动及依赖关系演化特征
董志良, 贾妍婧, 安海岗
河北地质大学城市地质与工程学院,石家庄 050031
Indirect Energy Flow and Dependency Evolution Characteristics Among Industrial Sectors
DONG Zhiliang, JIA Yanjing, AN Haigang
School of Urban Geology and Engineering, Hebei GEO University, Shijiazhuang 050031, China
全文: PDF(4039 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为降低产业部门间能源消耗,基于投入产出表构建产业部门间间接能源流动网络,结合依赖度矩阵等方法明确产业部门间间接能源流动情况及依赖关系。研究表明:产业部门间间接能源供给较消耗更为集中,供给源头从化工行业转向服务业;产业链上下游环节间间接能源流动量较大且较稳定;间接能源流动与部门间依赖关系的相关性逐渐增强,但仍需改善。需进一步优化产业结构,提高国内产业链完整性,降低产业部门间能源消耗。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董志良
贾妍婧
安海岗
关键词 间接能源流动投入产出复杂网络依赖关系    
Abstract:In order to reduce the energy consumption between industrial sectors, this paper constructs the indirect energy flow network between industrial sectors based on the input-output table, and defines the energy flow situation and dependence relationship between industrial sectors by combining the dependence matrix with other methods. The results show that, the indirect energy supply is more concentrated than the consumption among industrial sectors, and the supply source shifts from the chemical industry to the service industry. Indirect energy flows between the upstream and downstream links of the industrial chain are relatively large and stable. The correlation between indirect energy flows and inter-sector dependence is gradually increasing, but it still needs to be improved. It is necessary to further optimize the industrial structure, improve the integrity of the domestic industrial chain and reduce the energy consumption among industrial sectors.
Key wordsindirect energy flows    input-output    complex networks    dependencies
收稿日期: 2022-07-09      出版日期: 2023-12-28
ZTFLH:  F206  
基金资助:河北省高等学校人文社会科学研究项目(SD191006)
通讯作者: 安海岗(1981-),男,河北石家庄人,博士,教授,主要研究方向为管理科学与工程。   
作者简介: 董志良(1975-),男,河北石家庄人,博士,教授,主要研究方向为管理科学与工程。
引用本文:   
董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
DONG Zhiliang, JIA Yanjing, AN Haigang. Indirect Energy Flow and Dependency Evolution Characteristics Among Industrial Sectors. Complex Systems and Complexity Science, 2023, 20(4): 61-68.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.04.009      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I4/61
[1] 张军, 刘君. 中国能源消费模式的转变及其解释 [J]. 学术月刊, 2008, 40(7): 60-68.
ZHANG J, LIU J. The change of China's energy consumption pattern and its implications [J]. Academic Monthly, 2008,40(7):60-68.
[2] BULLARD C W, PENNER P S, PILATI D A. Net energy analysis: handbook for combining process and input-output analysis [J]. Resources & Energy, 1978,1(3):267-313.
[3] KANG W, WANG M, CHEN Y, et al. Decoupling of the growing exports in foreign trade from the declining gross exports of embodied energy[J]. International Journal of Environmental Research and Public Health,2022,19(15):9625.
[4] 王谋,康文梅,陈迎.外贸出口增长与隐含能源出口总量下降的脱钩[J].中国人口·资源与环境,2022,32(3):21-27.
WANG M, KANG W M, CHEN Y. Decoupling between the growth of international trade export and the decline of embodied energy exports [J]. China Population, Resources and Environment, 2022,32(3):21-27.
[5] SU B, ANG B W. Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities [J]. Energy Economics, 2017,65(6):137-147.
[6] WANG Y, WANG Y, ZHOU J, et al. Energy consumption and economic growth in China: a multivariate causality test [J]. Energy Policy, 2011, 39(7): 4399-4406.
[7] 马江. 全球生产网络背景下日本能源消耗测算及特征分析——基于多区域投入产出模型的分析 [J]. 中国林业经济, 2020(3): 9-13.
MA J. Calculation andcharacteristic analysis of energy consumption in Japan from a global production chain perspective: an empirical analysis based on the MRIO model [J]. China Forestry Economics, 2020(3): 9-13.
[8] BEAKHET H A, YASMIN T. Assessment of the global financial crisis effects on energy consumption and economic growth in Malaysia: an input-output analysis [J]. International Economics, 2014,140(4):49-70.
[9] WEBER C L. Measuring structural change and energy use: Decomposition of the US economy from 1997 to 2002 [J]. Energy Policy, 2009,37(4):1561-1570.
[10] 王菲,曹永强,范帅邦.“双碳”目标下东北三省水-能源纽带关系及网络特征分析[J/OL].生态学报,2022,42(14):1-17.
WANG F, CAO Y Q, FAN S B. Analysis of water-energy ties and network characteristic in three northeastern provinces under the "double carbon" target [J]. Acta Ecologica Sinica, 2022,42(14):1-17.
[11] XU W , XIE Y , CAI Y, et al. Environmentally-extended input-output and ecological network analysis for Energy-Water-CO2 metabolic system in China [J]. Science of The Total Environment, 2021,758(22):143931.
[12] JIANG M, GAO X, GUAN Q, et al. The structural roles of sectors and their contributions to global carbon emissions: a complex network perspective [J]. Journal of Cleaner Production, 2019, 208(10),426-435.
[13] LEONTIEF W W. Input-output economics [J]. Operational Research Quarterly, 1952,3(2):30-31.
[14] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks [J]. Journal of Statistical Mechanics Theory & Experiment, 2008(10):10008.
[15] FATH B D. Network analysis applied to large-scale cyber-ecosystems [J]. Ecological Modelling, 2004,171(4):329-337.
[16] SCHRAMSKI J R, KAZANCI C, TOLLNER E W. Network environ theory, simulation, and EcoNet 2.0 [J]. Environmental Modelling & Software, 2011,26(4): 419-428.
[1] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[2] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[3] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[4] 杨文东, 黄依宁, 张生润. 基于多层复杂网络的RCEP国际航线网络特征分析[J]. 复杂系统与复杂性科学, 2023, 20(3): 60-67.
[5] 任翠萍, 杨明翔, 张裕铭, 谢逢洁. 快递安全事故致因网络构建及结构特性分析[J]. 复杂系统与复杂性科学, 2023, 20(2): 74-80.
[6] 曾茜, 韩华, 李秋晖, 李巧丽. 基于分包的混合朴素贝叶斯链路预测模型[J]. 复杂系统与复杂性科学, 2023, 20(2): 10-19.
[7] 林兆丰, 李树彬, 孔祥科. 地铁建设对公交系统鲁棒性的影响[J]. 复杂系统与复杂性科学, 2023, 20(1): 66-73.
[8] 李巧丽, 韩华, 李秋晖, 曾茜. 基于最优路径相似度传输矩阵的链路预测方法[J]. 复杂系统与复杂性科学, 2023, 20(1): 9-17.
[9] 路冠平, 李江平. 基于复杂网络演化模型的新冠危机对经济的冲击研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 34-40.
[10] 王淑良, 陈辰, 张建华, 栾声扬. 基于复杂网络的关联公共交通系统韧性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 47-54.
[11] 郭明健, 高岩. 基于复杂网络理论的电力网络抗毁性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 1-6.
[12] 肖瑶, 李守伟, 王怡涵. FPGA芯片产业链及知识转移网络特征分析[J]. 复杂系统与复杂性科学, 2022, 19(3): 20-26.
[13] 张健, 宋志刚, 张雨. 基于节点重要性的建筑群火灾蔓延高危建筑的确定方法[J]. 复杂系统与复杂性科学, 2022, 19(3): 66-73.
[14] 肖琴, 罗帆. 基于复杂网络的通用航空安全监管演化博弈研究[J]. 复杂系统与复杂性科学, 2022, 19(3): 33-43.
[15] 吴俊, 邓烨, 王志刚, 谭索怡, 李亚鹏. 复杂网络瓦解问题研究进展与展望[J]. 复杂系统与复杂性科学, 2022, 19(3): 1-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed