Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (3): 69-76    DOI: 10.13306/j.1672-3813.2024.03.010
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于复杂网络的天然气管道网络风险传播研究
戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝
南华大学 a.资源环境与安全工程学院; b.核设施应急安全技术与装备湖南省重点实验室,湖南 衡阳 421001
A Study of Risk Propagation in Natural Gas Pipeline Networks Based on Complex Networks
DAI Jianyong, GAN Meiyan, ZHANG Meirong, MAO Jiazhi, LIU Chao
a. School of Resource Environment and Safety Engineering; b. Hunan Province Key Laboratory of Emergency Safety Technology and Equipment for Nuclear Facilities, University of South China, Hengyang 421001, China
全文: PDF(1793 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为改善管道安全监控与维护,探究天然气管道网络最优风险传播路径。首先,基于复杂网络理论构建网络拓扑结构,利用应用熵权—TOPSIS法对网络节点重要性排序。其次,构建天然气管道网络风险传播模型,定义网络节点失效率和脆弱度,得到蓄意破坏与随机破坏策略下节点的风险传播度和风险最优传播路径。最后,以上海市天然气管道网络为例进行实证分析,结果表明,级联风险情况下的蓄意破坏传播风险度总和大于随机破坏,为管道拓扑优化与维护提供依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戴剑勇
甘美艳
张美荣
毛佳志
刘朝
关键词 复杂网络天然气管道网络风险传播路径蓄意破坏随机破坏    
Abstract:To improve pipeline safety monitoring and maintenance, the optimal risk transmission path of the natural gas pipeline network is explored. Firstly, the network topology is constructed based on complex network theory, and the importance of network nodes is ranked by entropy weight-TOPSIS method. Secondly, the risk propagation model of the natural gas pipeline network is constructed, the failure rate and vulnerability of network nodes are defined, and the risk propagation degree and optimal risk propagation path of nodes under deliberate and random failure strategies are obtained. Finally, based on the empirical analysis of the Shanghai natural gas pipeline network, the results show that the total risk of intentional damage propagation is greater than that of random damage in the case of cascade risk, which provides a basis for pipeline topology optimization and maintenance.
Key wordscomplex networks    natural gas pipeline network    risk communication routes    deliberate vandalism    random vandalism
收稿日期: 2022-11-01      出版日期: 2024-11-07
ZTFLH:  X937  
  N94  
基金资助:湖南省教育厅重点资助科研项目(18A235)
作者简介: 戴剑勇(1969-),男,湖南新化人,博士,教授,主要研究方向为安全系统工程与风险管理。
引用本文:   
戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
DAI Jianyong, GAN Meiyan, ZHANG Meirong, MAO Jiazhi, LIU Chao. A Study of Risk Propagation in Natural Gas Pipeline Networks Based on Complex Networks[J]. Complex Systems and Complexity Science, 2024, 21(3): 69-76.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.03.010      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I3/69
[1] FARZANEH-GORD M, RAHBARI H R. Response of natural gas distribution pipeline networks to ambient temperature variation[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 94-105.
[2] BARIHA N, MISHRA I M, SRIVASTAVA V C. Hazard analysis of failure of natural gas and petroleum gas pipelines[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 217-226.
[3] 彭开和. 基于十堰市“6·13”重大燃气爆炸事故的城市天然气管道事故原因分析及对策研究[J]. 工业安全与环保, 2022, 48(5): 20-22.
PENG K H.Study on the causes and countermeasures of urban natural gas pipeline accidents based on the “June 13” gas explosion accident in Shiyan[J]. Industrial Safety and Environmental Protection, 2022, 48(5): 20-22.
[4] 张之刚, 常朝稳, 韩培胜, 等. Risk Rank:一种网络风险传播分析方法[J]. 重庆大学学报, 2021, 44(9): 132-138.
ZHANG Z G,CHAO Y G,HANG P S,et al.Risk rank:an analysis method of network risk propagation[J]. Journal of Chongqing University, 2021, 44(9): 132-138.
[5] 王冬. 复杂网络的拓扑结构对传播动力学的影响研究[D]. 哈尔滨: 哈尔滨工业大学(深圳校区), 2021.
WANG D.Research on the influence of topological structures of complex networks on propagation dynamics[D]. Harbin: Harbin Institute of Technology(Shenzhen),2021.
[6] BAI Y P, WU J S, REN Q R, et al. A BN-based risk assessment model of natural gas pipelines integrating knowledge graph and DEMATEL[J]. Process Safety and Environmental Protection, 2023, 171: 640-654.
[7] WANG X, DUAN Q Q. Improved AHP-TOPSIS model for the comprehensive risk evaluation of oil and gas pipelines[J]. Petroleum Science, 2019, 16: 1479-1492.
[8] 田思祺, 高鹏, 刘畅. 基于云模型的跨越管道综合风险评估[J]. 油气储运, 2021, 40(7): 822-827.
TIAN S Q,GAO P,LIU C. Comprehensive risk assessment of crossover pipelines based on cloud model[J]. Oil & Gas Storage and Transportation, 2021, 40(7): 822-827.
[9] 刘海云, 韩晓松, 翟振岗, 等. 基于复杂网络的燃气管线破裂灾害链风险分析[J]. 中国安全生产科学技术,2020,16(9):37-42.
LIU H Y,HAN X S,ZHAI Z G, et al. Risk analysis on rupture disaster chain of gas pipeline based on complex network[J]. Journal of Safety Science and Technology, 2020, 16(9): 37-42.
[10] WANG W C, ZHANG Y, LI Y X, et al. Vulnerability analysis of a natural gas pipeline network based on network flow[J]. International Journal of Pressure Vessels and Piping, 2020, 188: 104236.
[11] YE H, LI Z P, LI G Y, et al. Topology analysis of natural gas pipeline networks based on complex network theory[J].Energies, 2022,15(11): 3864.
[12] DU Y X, GAO C, HU Y, et al. A new method of identifying influential nodes in complex networks based on TOPSIS[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 399: 57-69.
[13] CHEN P Y. Effects of the entropy weight on TOPSIS[J]. Expert Systems with Applications, 2021, 168: 114186.
[14] 高双. 级联失效下武汉市轨道交通网络抗毁性研究[D]. 武汉: 武汉理工大学, 2017.
GAO S.Research on invulnerability of Wuhan rail transit network[D].Wuhan: Wuhan University of Technology, 2017.
[15] WANG J W, RONG L L. A model for cascading failures in scale-free networks with a breakdown probability[J]. Physica A: Statistical Mechanics and Its Applications, 2009, 388(7): 1289-1298.
[16] FU C Q, WANG Y, WANG X Y. Research on complex networks' repairing characteristics due to cascading failure[J]. Physica A-Statistical Mechanics and Its Applications, 2017, 482: 317-324.
[17] WANG Z, HU Y Y, DONG R,et al. Determination of the risk propagation path of cascading faults in chemical material networks based on complex networks[J]. The Canadian Journal of Chemical Engineering, 2021, 99(s1): S540-S550.
[1] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[2] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[3] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[4] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[5] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[6] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[7] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[8] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[9] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[10] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[11] 杨文东, 黄依宁, 张生润. 基于多层复杂网络的RCEP国际航线网络特征分析[J]. 复杂系统与复杂性科学, 2023, 20(3): 60-67.
[12] 任翠萍, 杨明翔, 张裕铭, 谢逢洁. 快递安全事故致因网络构建及结构特性分析[J]. 复杂系统与复杂性科学, 2023, 20(2): 74-80.
[13] 曾茜, 韩华, 李秋晖, 李巧丽. 基于分包的混合朴素贝叶斯链路预测模型[J]. 复杂系统与复杂性科学, 2023, 20(2): 10-19.
[14] 林兆丰, 李树彬, 孔祥科. 地铁建设对公交系统鲁棒性的影响[J]. 复杂系统与复杂性科学, 2023, 20(1): 66-73.
[15] 路冠平, 李江平. 基于复杂网络演化模型的新冠危机对经济的冲击研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 34-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed