Analysis and Simulations of a New Nonlinear Chaotic System
ZHOU Wenjing, ZHANG Fuchen
a. School of Mathematics and Statistics; b. Chongqing Key Laboratory of Statistical Intelligent Computing and Monitoring, Chongqing Technology and Business University, Chongqing 400067, China
Abstract:In order to explore new chaos phenomenon and its producing mechanism, it is convenient for us to understand and apply chaos. A new kind of chaotic system is constructed by using chaos theory and we find that this system has rich nonlinear dynamic properties. Using nonlinear system theory and numerical simulation techniques, we study the attractors of this system and their dimensions, Lyapunov exponent, initial sensitivity, dissipation, bifurcation plot and global attraction domain and this paper enriches and develops chaos theory. This chaotic system has potential applications and can be used to protect data security and image encryption.
周雯静, 张付臣. 新非线性混沌系统动力学分析及仿真[J]. 复杂系统与复杂性科学, 2025, 22(1): 77-82.
ZHOU Wenjing, ZHANG Fuchen. Analysis and Simulations of a New Nonlinear Chaotic System[J]. Complex Systems and Complexity Science, 2025, 22(1): 77-82.
[1] LORENZ E N. Deterministic non-periods flows[J]. Journal of the Atmospheric Science, 1963, 20: 130-141. [2] CHEN G R, UETA T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7): 1465-1466. [3] LU J H, CHEN G R, CHENG D Z, et al. Bridge the gap between the Lorenz system and the Chen system[J]. International Journal of Bifurcation and Chaos, 2002, 12: 2917-2926. [4] 时帅帅, 刘立才, 杜传红. 新混沌系统分析及其同步控制[J]. 工程数学学报, 2022, 39(5):709-724. SHI S S, LIU L C, DU C H. Analysis and synchronization control of new chaotic systems [J]. Chinese Journal of Engineering Mathematics, 2022, 39(5):709-724. [5] 常博源, 杨京卫, 张路. Duffing-WS型小世界网络的混沌行为[J]. 四川大学学报: 自然科学版, 2023, 60: 021005. CHANG B Y, YANG J W, ZHANG L. Chaotic behavior of Duffing-WS small-world networks[J]. Journal of Sichuan University: Natural Science Edition, 2023, 60: 021005. [6] 蒋金凯, 杜正东. 细长刚体块系统中的混沌现象及其Lyapunov指数谱计算[J]. 四川大学学报:自然科学版, 2022, 59: 041003. JIANG J K, DU Z D. Chaotic phenomena and Lyapunov index spectrum calculation in elongated rigid mass system[J]. Journal of Sichuan University: Natural Science Edition, 2022, 59: 041003. [7] ZHANG F C, ZHOU P, CHEN X S, et al. Chaotic dynamics in generalized Rabinovich system[J]. International Journal of Bifurcation and Chaos, 2021, 31(3): 2150036. [8] ZHANG F C, ZHOU P, QIN J, et al. Dynamics of a generalized Lorenz-like chaos dynamical systems[J]. Journal of Applied Analysis and Computation, 2021,11(3): 1577-1587. [9] ZHANG F C, LIAO X F, ZHANG G Y, et al. Dynamical analysis of the generalized Lorenz systems[J]. Journal of Dynamical and Control Systems, 2017, 23(2): 349-362. [10] ZHANG F C, LIAO X F, ZHANG G Y, et al. Dynamical behaviors of a generalized Lorenz family[J]. Discrete and Continuous Dynamical Systems-Series B, 2017, 22(10): 3707-3720. [11] LIN D, ZHANG F C, LIU J M. Symbolic dynamics-based error analysis on chaos synchronization via noisy channels[J]. Physical Review E, 2014, 90: 012908. [12] FREDERICKSON P, KAPLAN J L, YORKE E D, et al. The Lyapunov dimension of strange attractors[J]. Journal of Differential Equations, 1983, 49(2): 185-207. [13] 陈关荣, 吕金虎. Lorenz 系统族的动力学分析、控制与同步[M]. 北京:科学出版社, 2003: 2-19. [14] 廖晓峰,肖迪,陈勇. 向涛混沌密码学原理及其应用[M]. 北京:科学出版社, 2009: 20-40. [15] 秦进.简化 Lorenz混沌系统的非线性动力学分析[J]. 计算机工程与应用, 2015,51(12):53-54. QIN J. Dynamical analysis of modified Lorenz chaotic system[J]. Computer Engineering and Applications, 2015,51(12):53-54. [16] 张迪, 夏立伟, 张楚谦, 等. 基于SHA-3与DNA编码混沌系统的输电线路图像加密算法研究[J]. 科学技术与工程, 2022, 22(36): 16075-16083. ZHANG D, XIA L W, ZHANG C Q, et al. Research on image encryption algorithm of transmission line based on SHA-3 and DNA-encoded chaotic system[J]. Science Technology and Engineering, 2022, 22(36): 16075-16083. [17] LIANG Z Y, QIN Q X, ZHOU C J, et al. Color image encryption algorithm based on four-dimensional multi-stable hyper chaotic system and DNA strand displacement[J]. Journal of Electrical Engineering & Technology, 2023, 18(1): 539-559. [18] 张洁, 徐龙昊, 尹宝全. 有源磁控忆阻超混沌电路实现及图像加密[J]. 计算机工程与科学, 2022, 44(8): 1392-1401. ZHANG J, XU L H, YIN B Q. Implementation and image encryption of active magnetron memristor superchaotic circuit[J]. Computer Engineering and Science, 2022, 44(8): 1392-1401. [19] 闫少辉, 顾斌贤, 宋震龙, 等. 基于一种四维忆阻超混沌系统的图像加密算法[J]. 复杂系统与复杂性科学, 2023, 20(2): 43-51. YAN S H, GU B X, SONG Z L, et al. Image encryption algorithm based on a four-dimensional memristor hyperchaotic system[J]. Complex Systems and Complexity Science, 2023, 20(2): 43-51.