Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (1): 43-50    DOI: 10.13306/j.1672-3813.2024.01.006
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于复杂网络的疫情冲击对上证行业影响分析
刘建刚, 陈芦霞
湖南工商大学 a.理学院; b.统计学习与智能计算湖南省重点实验室, 长沙 410205
The Impact of Epidemic on Shanghai Stock Exchange Industry Based on Complex Networks
LIU Jiangang, CHEN Luxia
a. School of Science; b. Hunan Key Laboratory of Hunan Province for Statistical Learning and Intelligent Computation Hunan University of Technology and Business, Changsha 410205, China
全文: PDF(2393 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为探究新冠疫情对中国股票市场的影响,利用格兰杰因果检测,构建疫情爆发前、爆发期和疫情常态化控制三个阶段的复杂网络模型。分别从网络拓扑结构、抗毁性能和节点重要性进行比较分析。发现疫情冲击明显改变了上证行业板块结构关系,行业指数间联动效应有所减弱;网络攻击仿真实验显示,面对破坏性更强的蓄意攻击,第三阶段抵抗能力更持久,其次是第一、二阶段的网络。疫情前后行业股票重要性排序发生了显著变化,电子、社会服务、综合和商贸零售行业在股市上逐渐处于中心主导位置;计算机、家用电器和通信行业成为股市网络中信息传输效率的重要控制节点。疫情过程中,医药生物所受正向冲击明显,成为了市场中风险传染的缓冲器。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘建刚
陈芦霞
关键词 复杂网络新冠疫情动态结构变化抗毁性    
Abstract:In order to explore the impact of the Covid-19 epidemic on China's stock market, the Granger causality test is used to construct a complex network model of three stages before the outbreak, the outbreak period and the normalized control of the epidemic. The comparative analysis is made from the network topology, survivability and node importance. It is found that the impact of the epidemic has significantly changed the structural relationship of the Shanghai Stock Exchange industry sectors, and the linkage effect between industry indices has weakened; the network attack simulation experiment shows that in the face of more destructive deliberate attacks, the third stage has a more durable resistance, followed by the first, second-stage network. Before and after the epidemic, the ranking of the importance of industry stocks has changed significantly. The electronics, social services, comprehensive and commercial retail industries have gradually taken an important position in the stock market; the computer, household appliances and communication industries have become important control nodes for information transmission efficiency in the stock market network. During the attack of the epidemic, the positive impact of medical biology was obvious, and it became a buffer for risk contagion in the market.
Key wordscomplex networks    COVID-19    dynamic structural change    invulnerability
收稿日期: 2022-08-14      出版日期: 2024-04-26
ZTFLH:  N949  
基金资助:湖南省教育厅科学研究项目(22B0612)
通讯作者: 陈芦霞(1998-),女,江西贵溪人,硕士研究生,主要研究方向为复杂网络在金融、经济领域的研究与应用。   
作者简介: 刘建刚(1984-),男,山东泰安人,博士,副教授,主要研究方向为多智能体系统分布式协同控制理论及其应用。
引用本文:   
刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
LIU Jiangang, CHEN Luxia. The Impact of Epidemic on Shanghai Stock Exchange Industry Based on Complex Networks[J]. Complex Systems and Complexity Science, 2024, 21(1): 43-50.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.01.006      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I1/43
[1] 徐宏, 蒲红霞. 新冠疫情对中国股票市场的影响——基于事件研究法的研究[J].金融论坛, 2021, 26(7): 70-80.
XU H, PU H X. The impact of COVID-19 on China's stock market-based on event study[J].Finance Forum, 2021, 26(7): 70-80.
[2] 周民军,曲彬,黄雯,等. 新冠肺炎疫情冲击对我国产业发展和金融市场波动的影响——基于事件研究法和EGARCH模型的实证研究[J].华北金融, 2021,43(2): 28-39,55.
ZHOU J M, QU B, HUAN W,et al. The impact of COVID-19 on China's industrial development and financial market volatility-based on event study and EGARCH model[J]. Huabei Finance, 2021,43(2): 28-39,55.
[3] WANG X F, CHEN G. Complex networks: small-world, scale-free and beyond[J]. IEEE Circuits and Systems Magazine, 2003, 3(1): 6-20.
[4] LI M, LIU R R, LÜ L,et al. Percolation on complex networks: theory and application[J]. Physics Reports, 2021, 907: 1-68.
[5] ONNELA J P, KASKI K, KERTÉSZ J. Clustering and information in correlation based financial networks[J]. The European Physical Journal B, 2004, 38(2): 353-362.
[6] NOBI A, MAENG S E, HA G G,et al. Effects of global financial crisis on network structure in a local stock market[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 407: 135-143.
[7] VÝROST T, LYÓCSA Š, BAUMÖHL E. Granger causality stock market networks: temporal proximity and preferential attachment[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 427: 262-276.
[8] ZHENG Q, SONG L. Dynamic contagion of systemic risks on global main equity markets based on granger causality networks[J]. Discrete Dynamics in Nature and Society, 2018(2):1-13.
[9] 赵军产,黄麒安,吴晓群,等.基于格兰杰因果网络的中美贸易战对上证行业冲击的研究[J].物理学报,2021,70(7):325-333.
ZHAO J C, HUAN Q A,WU X Q,et al.The impcat of trade war on Shanghai stock exchange industry based on granger causality network[J]. Acta Physica Sinica,2021,70(7):325-333.
[10] 黄轲,陈瑶雯,刘曙华,等.“黑天鹅”事件与中国金融市场波动传递的动态网络[J].金融经济学研究,2021,36(5):31-47.
HUAN K, CHEN W Y, LIU S H, et al. “Black swan” events and dynamic network of volatility transmission in China's financial market[J.]Financial Economics Research, 2021,36(5):31-47.
[11] 周方召,贾少卿.经济政策不确定性、投资者情绪与中国股市波动[J].金融监管研究,2019,8(8):101-114.
ZHOU F Z, JIA S Q. Economic policy uncertainty, investor sentiment and China's stock market volatility[J]. Financial Regulation Research, 2019,8(8):101-114.
[12] ALBERT R, JEONG H, BARABÁSI A L. Error and attack tolerance of complex networks[J]. Nature, 2000, 406(6794): 378-382.
[13] WANG H, HUANG J, XU X, et al. Damage attack on complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 408: 134-148.
[14] BELLINGERI M, CASSI D, VINCENZI S. Efficiency of attack strategies on complex model and real-world networks[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 414: 174-180.
[15] 王梓行,姜大立,漆磊,等.基于冗余度的复杂网络抗毁性及节点重要度评估模型[J].复杂系统与复杂性科学,2020,17(3):78-85.
WANG Z H, JIANG D L,QI L,et al. Complex network invulnerability and node importance evaluation model based on redundancy[J]. Complex Systems and Complexity Science, 2020,17(3):78-85.
[16] GRANGER C W J. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica: journal of the Econometric Society, 1969,37(3): 424-438.
[17] SIGGIRIDOU E, KOUTLIS C, TSIMPIRIS A, et al. Evaluation of Granger causality measures for constructing networks from multivariate time series[J]. Entropy, 2019, 21(11): 1080.
[18] FREEMAN L C. Centrality in social networks conceptual clarification[J]. Social Networks, 1978, 1(3): 215-239.
[19] COSTA L F, RODRIGUES F A, TRAVIESO G, et al. Characterization of complex networks: a survey of measurements[J]. Advances in Physics, 2007, 56(1): 167-242.
[20] 汪小帆, 李翔, 陈关荣. 网络科学导论[M].北京:高等教育出版社,2012:161.
[1] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[2] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[3] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[4] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[5] 杨文东, 黄依宁, 张生润. 基于多层复杂网络的RCEP国际航线网络特征分析[J]. 复杂系统与复杂性科学, 2023, 20(3): 60-67.
[6] 曾茜, 韩华, 李秋晖, 李巧丽. 基于分包的混合朴素贝叶斯链路预测模型[J]. 复杂系统与复杂性科学, 2023, 20(2): 10-19.
[7] 任翠萍, 杨明翔, 张裕铭, 谢逢洁. 快递安全事故致因网络构建及结构特性分析[J]. 复杂系统与复杂性科学, 2023, 20(2): 74-80.
[8] 林兆丰, 李树彬, 孔祥科. 地铁建设对公交系统鲁棒性的影响[J]. 复杂系统与复杂性科学, 2023, 20(1): 66-73.
[9] 李巧丽, 韩华, 李秋晖, 曾茜. 基于最优路径相似度传输矩阵的链路预测方法[J]. 复杂系统与复杂性科学, 2023, 20(1): 9-17.
[10] 路冠平, 李江平. 基于复杂网络演化模型的新冠危机对经济的冲击研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 34-40.
[11] 郭明健, 高岩. 基于复杂网络理论的电力网络抗毁性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 1-6.
[12] 王淑良, 陈辰, 张建华, 栾声扬. 基于复杂网络的关联公共交通系统韧性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 47-54.
[13] 吴俊, 邓烨, 王志刚, 谭索怡, 李亚鹏. 复杂网络瓦解问题研究进展与展望[J]. 复杂系统与复杂性科学, 2022, 19(3): 1-13.
[14] 肖瑶, 李守伟, 王怡涵. FPGA芯片产业链及知识转移网络特征分析[J]. 复杂系统与复杂性科学, 2022, 19(3): 20-26.
[15] 肖琴, 罗帆. 基于复杂网络的通用航空安全监管演化博弈研究[J]. 复杂系统与复杂性科学, 2022, 19(3): 33-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed