Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (3): 113-121    DOI: 10.13306/j.1672-3813.2025.03.015
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于观测器的多智能体系统有限时间预设性能一致性控制
朱瑞斌, 王立杰
青岛大学 a.自动化学院;b.复杂性科学研究所,山东 青岛 266071
Observer-based Finite-time Prescribed Performance Consensus Control for Multi-agent Systems
ZHU Ruibin, WANG Lijie
a. School of Automation; b. Institute of Complexity Science, Qingdao University, Qingdao 266071, China
全文: PDF(1953 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对状态不可测的多智能体系统,研究了其在性能约束条件下输出一致性控制问题。首先,利用模糊逻辑系统对被控系统中存在的未知非线性函数进行逼近,并引入自适应模糊观测器估计不可测的状态。其次,设计了一种可保证滤波误差在有限时间内收敛的滤波器,有效地避免了分布式控制器设计过程中出现的“复杂度爆炸”问题。为了进一步实现系统的良好暂态性与稳态性能,设计了一种不依赖于误差初始条件的有限时间预设性能函数,通过设计合理的障碍函数,建立了误差性能约束系统与无约束系统之间的关系。结合反步法与有限时间动态面技术,提出了一种基于有限时间预设性能的一致性控制方案,该方案不仅保证了每一个跟随者的输出与领导者的输出最终达到同步,且一致性误差在有限时间内收敛于指定的约束范围内。最后,通过数值仿真验证了所提出方法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱瑞斌
王立杰
关键词 多智能体系统状态观测器动态面技术有限时间预设性能    
Abstract:This paper investigates the output consensus control problem of multi-agent systems with unmeasurable states under performance constraints. Firstly, the fuzzy logic system is used to approximate the unknown nonlinear function existed in the controlled system, and the adaptive fuzzy observer is introduced to estimate the unmeasurable state. Secondly, a filter whose filtering error can be ensured to converge in a fixed time is designed, which effectively avoids the “complexity explosion” problem in the distributed controller design process. In order to further realize better transient and steady-state performance of the system, a finite-time prescribed performance function that does not depend on the initial conditions of the error is designed. By designing an appropriate barrier function, the relationship between the error performance constrained system and the unconstrained system is established. Combining backstepping and fixed-time dynamic surface techniques, a consensus control scheme with finite-time prescribed performance is proposed. This scheme not only ensures that the output of each follower and the output of the leader finally reach synchronization, but also the consensus error converges to the specified constraint range in a finite time. Finally, the effectiveness of the proposed method is verified by numerical simulation.
Key wordsmulti-agent systems    state observer    dynamic surface technique    finite-time prescribed performance
收稿日期: 2023-11-01      出版日期: 2025-10-09
ZTFLH:  N94  
  TP13  
基金资助:国家自然科学基金(62103214);山东省青年泰山学者(tsqnz20221133);中国博士后科学基金(2021M700077,2023T160348);山东省博士后创新项目(202101014);山东省高校青年创新科技计划(2022KJ301);青岛市博士后应用研究项目基金(2020年);山东省智能建筑技术重点实验室(SDIBT20021002)
通讯作者: 王立杰(1989-),女,辽宁北票人,博士,副教授,主要研究方向为复杂非线性系统智能控制、信号处理等。   
作者简介: 朱瑞斌(1998-),男,安徽六安人,硕士研究生,主要研究方向为非线性自适应控制、多智能体系统。
引用本文:   
朱瑞斌, 王立杰. 基于观测器的多智能体系统有限时间预设性能一致性控制[J]. 复杂系统与复杂性科学, 2025, 22(3): 113-121.
ZHU Ruibin, WANG Lijie. Observer-based Finite-time Prescribed Performance Consensus Control for Multi-agent Systems[J]. Complex Systems and Complexity Science, 2025, 22(3): 113-121.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.03.015      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I3/113
[1] DU H B, WEN G H, WU D, et al. Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems[J]. Automatica, 2020, 113: 108797.
[2] CHEN S, HO D W C, LI L, et al.Fault-tolerant consensus of multi-agent system with distributed adaptive protocol[J]. IEEE Transactions on Cybernetics, 2014, 45(10): 2142-2155.
[3] 王庆领, 王雪娆. 切换拓扑下非线性多智能体系统自适应神经网络一致性[J]. 控制理论与应用, 2023, 40(4): 633-640.
WANG Q, WANG X. Adaptive NN consensus of nonlinear multi-agent systems under switching topologies[J]. Control Theory & Applications, 2023, 40(4): 633-640.
[4] 王建晖, 邹涛, 张春良, 等. 带输出死区的多智能体系统预设时间事件触发式协同控制[J]. 控制与决策, 2023, 38(2): 441-449.
WANG J, ZOU T, ZHANG C, et al. Prescribed setting time event-triggered synergetic control of multiagent systems with output dead-zone[J]. Control & Decision, 2023, 38(2): 441-449.
[5] WEN G, ZHAO Y, DUAN Z, et al. Containment of higher-order multi-leader multi-agent systems: a dynamic output approach[J]. IEEE Transactions on Automatic Control, 2015, 61(4): 1135-1140.
[6] WANG D, WANG W. Necessary and sufficient conditions for containment control of multi-agent systems with time delay[J]. Automatica, 2019, 103: 418-423.
[7] 孙玉娇,杨洪勇,于美妍.基于领航跟随的多机器人系统有限时间一致性控制研究[J].复杂系统与复杂性科学,2020, 17(4): 66-72.
SUN Y J, YANG H Y, YU M Y. The finite time consistency control of multi-robot systems based on leader-following[J]. Complex Systems and Complexity Science, 2020, 17(4): 66-72.
[8] PENG Z, LIU L, WANG J. Output-feedback flocking control of multiple autonomous surface vehicles based on data-driven adaptive extended state observers[J]. IEEE Transactions on Cybernetics, 2020, 51(9): 4611-4622.
[9] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
WANG X, JI Z J. A novel UAV formation algorithm based on MAS[J]. Complex Systems and Complexity Science, 2019, 16(2): 60-68.
[10] WANG C, JI J, MIAO Z, et al.Udwadia-Kalaba approach based distributed consensus control for multi-mobile robot systems with communication delays[J]. Journal of the Franklin Institute, 2022, 359(14): 7283-7306.
[11] SU H, WANG X, CHEN X, et al. Second-order consensus of hybrid multiagent systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 51(10): 1-10.
[12] TAN C, CUI Y, LI Y J. Global consensus of high-order discrete-time multi-agent systems with communication delay and saturation constraint[J]. SENSORS, 2022, 22(3): 1424-8220.
[13] SONG X, ZHAO L. Adaptive fuzzy finite-time consensus tracking for high-order stochastic multi-agent systems with input saturation[J]. International Journal of Fuzzy Systems, 2022, 24(8): 3781-3795.
[14] SWAROOP D, HEDRICK J K, YIP P P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10): 1893-1899.
[15] SUN J, LIU C.Distributed zero-sum differential game for multi-agent systems in strict-feedback form with input saturation and output constraint[J]. Neural Networks, 2018, 106: 8-19.
[16] ZHANG T, LIN M, XIA X, et al. Adaptive cooperative dynamic surface control of non-strict feedback multi-agent systems with input dead-zones and actuator failures[J]. Neurocomputing, 2021, 442: 48-63.
[17] SHAN H, XUE H, HU S, et al. Finite-time dynamic surface control for multi-agent systems with prescribed performance and unknown control directions[J]. International Journal of Systems Science, 2022, 53(2): 325-336.
[18] TANG L, YANG Y, ZOU W, et al. Neuro-adaptive fixed-time control with novel command filter design for nonlinear systems with input dead-zone[J]. Neurocomputing, 2022, 511: 308-318.
[19] Bechlioulis C P, Rovithakis G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099.
[20] ANDREAS P K, GEORGE A R. Prescribed performance consensus of heterogeneous quantized high-order uncertain multi-agent systems[J]. IFAC-PapersOnLine, 2020, 53(2): 2938-2943.
[21] SUN K, QIU J, KARIMI H R, et al. Event-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance[J]. IEEE Transactions on Fuzzy Systems, 2020, 29(6): 1460-1471.
[22] JI R, LI D, GE S S. Saturation-tolerant prescribed control for nonlinear time-delay systems[J]. IEEE Transactions on Fuzzy Systems, 2022, 31(8), 2495-2508.
[23] 辛红伟,李昊齐,祝国强,等. 基于自调节有限时间预设性能函数的多智能体系统动态面状态约束量化控制[J]. 控制与决策, 2023, 38(5): 1319-1326.
XIN H W, LI H Q, ZHU G Q, et al. Dynamic surface state constrained quantized control for multi-agent system with an adjustable finite-time prescribed performance function[J]. Control and Decision, 2023, 38(5): 1319-1326.
[24] WEN G, CHEN C L P, GE S S. Simplified optimized backstepping control for a class of nonlinear strict-feedback systems with unknown dynamic functions[J]. IEEE Transactions on Cybernetics, 2020, 51(9): 4567-4580.
[1] 陈英鑫, 纪志坚. 切换伪路图下的多智能体能控性[J]. 复杂系统与复杂性科学, 2025, 22(2): 135-144.
[2] 王彩鑫, 杨洪勇, 王丽丽. 基于最小引力路径的异构多智能体聚类的隐私保护[J]. 复杂系统与复杂性科学, 2025, 22(2): 145-150.
[3] 杨光红, 石重霄. 多智能体系统的分布式协同定位方法研究综述[J]. 复杂系统与复杂性科学, 2025, 22(2): 18-30.
[4] 毛子祥, 侯忠生. 动态事件触发下带有扰动的MASs无模型迭代二分一致控制[J]. 复杂系统与复杂性科学, 2025, 22(1): 138-145.
[5] 刘萌萌, 纪志坚, 刘允刚, 林崇. 含有等容胞腔的多智能体系统的能控性[J]. 复杂系统与复杂性科学, 2025, 22(1): 97-103.
[6] 纪亚楠, 纪志坚. 无向拓扑下多智能体系统目标能控的图论条件[J]. 复杂系统与复杂性科学, 2024, 21(4): 13-20.
[7] 肖朋朋, 纪志坚, 刘允刚, 林崇. InSCC拓扑结构的能控性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 47-55.
[8] 杜向阳, 李伟勋, 陈增强, 张利民. 非线性耦合多智能体系统组编队跟踪控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 72-79.
[9] 冯万典, 彭世国, 曾梓贤. 脉冲控制下半马尔可夫随机MAS的均方一致性[J]. 复杂系统与复杂性科学, 2022, 19(3): 81-87.
[10] 张志伟, 纪志坚. 有向路径下的一类多智能体系统的能控性分析[J]. 复杂系统与复杂性科学, 2022, 19(2): 63-70.
[11] 国俊豪, 纪志坚. 基于NE结果的多智能体系统模型及其能控性[J]. 复杂系统与复杂性科学, 2021, 18(4): 50-57.
[12] 王潇, 纪志坚. 基于MAS的合作—竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
[13] 李英桢, 纪志坚, 刘帅, 杨仪龙. 含时滞多智能体系统的边动态二分一致性[J]. 复杂系统与复杂性科学, 2019, 16(4): 19-30.
[14] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
[15] 仉伟, 纪志坚, 渠继军. 基于领导者对称的多智能体系统可控性研究[J]. 复杂系统与复杂性科学, 2019, 16(2): 52-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed