Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (2): 18-30    DOI: 10.13306/j.1672-3813.2025.02.004
  特邀专栏 本期目录 | 过刊浏览 | 高级检索 |
多智能体系统的分布式协同定位方法研究综述
杨光红, 石重霄
东北大学 a.信息科学与工程学院; b.流程工业综合自动化国家重点实验室,沈阳 110819
A Survey on Distributed Cooperative Localization for Multi-agent Systems
YANG Guanghong, SHI Chongxiao
a. College of Information Science and Engineering; b. State Key Laboratory of Synthetical Automation of Process Industries, Northeastern University, Shenyang 110819, China
全文: PDF(1188 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 多智能体系统的分布式协同定位是系统执行诸多复杂协同任务的关键环节。分布式协同定位方法旨在使各智能体利用相对空间测量信息与锚节点位置信息,通过结合分布式的网络通信,计算自身在全局坐标系下的位置。本文针对多智能体系统分布式协同定位方法的研究进展进行详细总结。首先,根据相对空间测量信息的类型,将现有分布式协同定位方法分为如下三类:基于距离测量信息、基于方位测量信息、以及基于混合测量信息的分布式协同定位方法。进而,通过描述测量信息与智能体位置之间的约束关系,对上述分布式协同定位方法的设计方案进行详细阐述,并比较现有方法的优缺点。此外,针对带有恶意测量信息的多智能体系统,介绍了可靠分布式协同定位方法的研究现状。最后,本文对多智能体系统分布式协同定位方法存在的问题进行了归纳总结,并提出了一些可能的解决方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨光红
石重霄
关键词 多智能体系统分布式协同定位测量信息可靠性    
Abstract:Distributed cooperative localization is a key process in many cooperative tasks for multi-agent systems. Distributed cooperative localization aims to enable each agent to determine their own locations by using the available locations of anchors, the relative measurements to their neighbors, and the distributed network communication. This paper summarizes the advances in the distributed cooperative localization for multi-agent systems. First, according to the types of relative measurements, the distributed cooperative localization methods are classified into three types, i.e., distance-based, bearing-based, and mixed-measurement-based distributed cooperative localization methods. Then, by characterizing the constraint relationship between the measurement and the agents’ locations, the design schemes of the above distributed cooperative localization methods are elaborated in detail, and the advantages and disadvantages of the methods are compared. Moreover, this paper introduces the research status of reliable distributed cooperative localization methods for multi-agent systems with malicious measurements. Finally, the ongoing challenges in distributed cooperative localization are anticipated, and the potential directions for resolution are proposed.
Key wordsmulti-agent system    distributed cooperative localization    measurement    reliability
收稿日期: 2025-04-18      出版日期: 2025-06-03
ZTFLH:  TP212.9  
  TP242.6  
基金资助:国家自然科学基金(U23A20337,U1908213);流程工业综合自动化国家重点实验室基金(2018ZCX03)
通讯作者: 石重霄(1992),男,辽宁义县人,博士研究生,副教授,主要研究方向为多无人系统协同控制与决策、信息物理系统安全性。   
作者简介: 杨光红(1963),男,吉林长春人,博士,教授,主要研究方向为容错控制、故障检测与隔离、信息物理系统安全性、无人系统。
引用本文:   
杨光红, 石重霄. 多智能体系统的分布式协同定位方法研究综述[J]. 复杂系统与复杂性科学, 2025, 22(2): 18-30.
YANG Guanghong, SHI Chongxiao. A Survey on Distributed Cooperative Localization for Multi-agent Systems[J]. Complex Systems and Complexity Science, 2025, 22(2): 18-30.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.02.004      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I2/18
[1] 衣鹏, 洪奕光. 分布式合作优化及其应用[J]. 中国科学: 数学, 2016, 46(10): 15471564.
YI P, HONG Y G. Distributed cooperative optimization and its applications[J]. Sci Sin Math, 2016, 46(10): 15471564.
[2] 吴玉秀, 孟庆浩, 曾明. 基于声音的分布式多机器人相对定位[J]. 自动化学报, 2014, 40(5): 798809.
WU Y X, MENG Q H, ZENG M. Sound based relative localization for distributed multi-robot systems[J]. Acta Automatica Sinica, 2014, 40(5): 798809.
[3] ASPNES J, EREN T, GOLDENBERG K D, et al. A theory of network localization[J]. IEEE Transactions on Mobile Computing, 2006, 5(12): 16631678.
[4] EREN T. Using angle of arrival(bearing) information for localization in robot networks[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2007, 15(2): 169186.
[5] XU F, LI X L, XIE L H. 3D distributed localization with mixed local relative measurements[J]. IEEE Transactions on Signal Processing, 2020, 68: 58695881.
[6] KHAN U A, KAR S, MOURA J M F. Distributed sensor localization in random environments using minimal number of anchor nodes[J]. IEEE Transactions on Signal Processing, 2009, 57(5): 20002016.
[7] DOHERTY L, PISTER K S J, EL GHAOUI L. Convex position estimation in wireless sensor networks[C]. Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies. Anchorage, AK, USA: IEEE, 2001: 16551663.
[8] JI X, ZHA H. Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling[C]. Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies. Hong Kong: IEEE, 2004: 26522661.
[9] SO A M C, YE Y. Theory of semidefinite programming for sensor network localization[J]. Mathematical Programming, 2007, 109(2/3): 367384.
[10] BISWAS P, LIAN T C, WANG T C, et al. Semidefinite programming based algorithms for sensor network localization[J]. ACM Transactions on Sensor Networks, 2006, 2(2): 188220.
[11] MOORE D, LEONARD J, RUS D, et al. Robust distributed network localization with noisy range measurements[C]. Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems. Baltimore, MD, USA: ACM, 2004: 5061.
[12] NICULESCU D, NATH B. Dv based positioning in ad hoc networks[J]. Telecommunication Systems, 2003, 22(14): 267280.
[13] RABBAT M, NOWAK R. Distributed optimization in sensor networks[C]. Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks. Berkeley, CA, USA: ACM, 2004: 2027.
[14] CHENG B H, VANDENBERGHE L, YAO K. Distributed algorithm for node localization in wireless ad-hoc networks[J]. ACM Transactions on Sensor Networks, 2009, 6(1): 8.
[15] CAO M, ANDERSON B D O, MORSE A S. Sensor network localization with imprecise distances[J]. Systems & Control Letters, 2006, 55(11): 887893.
[16] DIAO Y, LIN Z, FU M. A barycentric coordinate based distributed localization algorithm for sensor networks[J]. IEEE Transactions on Automatic Control, 2013, 58(9): 22372250.
[17] COSTA J A, PATWARI N, HERO A O. Distributed weighted-multidimensional scaling for node localization in sensor networks[J]. ACM Transactions on Sensor Networks, 2006, 2(1): 3964.
[18] ALBOWICZ J, CHEN A, ZHANG L. Recursive position estimation in sensor networks[C]. Proceedings of the IEEE International Conference on Network Protocols. Riverside, CA, USA: IEEE, 2001: 3541.
[19] SAVARESE C, RABAEY J M, BEUTEL J. Locationing in distributed ad hoc wireless sensor networks[C]. Proceedings of the 26th IEEE International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City, UT, USA: IEEE, 2001: 20372040.
[20] CAPKUN S, HAMDI M, HUBAUX J P. GPS-free positioning in mobile ad hoc networks[C]. Proceedings of the 34th IEEE Hawaii International Conference on System Sciences. Wailea Maui, HI, USA: IEEE, 2001: 34813490.
[21] GOWER J C. Euclidean distance geometry[J]. Mathematical Scientist, 1982, 7: 114.
[22] GOWER J C. Properties of euclidean and non-euclidean distance matrices[J]. Linear Algebra and Its Applications, 1985, 67: 8197.
[23] 陈伟, 颜俊, 朱卫平. 利用压缩感知与多边测量技术的无线传感器网络定位算法[J]. 信号处理, 2014, 30(6): 728735.
CHEN W, YAN J, ZHU W P. Wireless sensor network location algorithm using compressive sensing and multilateral measurements[J]. Journal of Signal Processing, 2014, 30(6): 728735.
[24] IHLER A T, FISHER III J W, MOSES R L, et al. Nonparametric belief propagation for self-calibration in sensor networks[C]. Proceedings of the 29th IEEE International Conference on Acoustics, Speech, and Signal Processing. Montreal, QC, Canada: IEEE, 2004: 265268.
[25] HU L, EVANS D. Localization for mobile sensor networks[C]. IEEE MOBICOM. Philadelphia, PA, USA: IEEE, 2004: 4557.
[26] COATES M. Distributed particle filters for sensor networks[C]. Proceedings of the IEEE Information Processing in Sensor Networks(IPSN). Berkeley, CA, USA: IEEE, 2004: 99107.
[27] THRUN S. Probabilistic robotics[J]. Communications of the ACM, 2002, 45(3): 5257.
[28] HE X, HU C, HONG Y, SHI L, FANG H T. Distributed Kalman filters with state equality constraints: time-based and event-triggered communications[J]. IEEE Transactions on Automatic Control, 2020, 65(1): 2843.
[29] LIU Q S, YANG S F, HONG Y. Constrained consensus algorithms with fixed step size for distributed convex optimization over multi-agent networks[J]. IEEE Transactions on Automatic Control, 2017, 62(8): 42594265.
[30] DESHMUKH S, NATARAJAN B, PAHWA A. State estimation over a lossy network in spatially distributed cyber-physical systems[J]. IEEE Transactions on Signal Processing, 2014, 62(15): 39113923.
[31] ZHAO S, ZELAZO D. Localizability and distributed protocols for bearing-based network localization in arbitrary dimensions[J]. Automatica, 2016, 69: 334341.
[32] ZHAO S, ZELAZO D. Bearing rigidity and almost global bearing-only formation stabilization[J]. IEEE Transactions on Automatic Control, 2016, 61(5): 12551268.
[33] LI X, LUO X, ZHAO S. Globally convergent distributed network localization using locally measured bearings[J]. IEEE Transactions on Control of Network Systems, 2020, 7(1): 245253.
[34] PIOVAN G, SHAMES I, FIDAN B, et al. On frame and orientation localization for relative sensing networks[C]. 47th IEEE Conference on Decision and Control. Cancun: IEEE, 2008: 23262331.
[35] FRANCHI A, ORIOLO G, STEGAGNO P. On the solvability of the mutual localization problem with anonymous position measures[C]. 2010 IEEE International Conference on Robotics and Automation. Anchorage: IEEE, 2010: 31933199.
[36] CAO K, HAN Z, LIN Z, et al. Bearing-only distributed localization: a unified barycentric approach[J]. Automatica, 2021, 133: 109834.
[37] TRON R, AFSARI B, VIDAL R. Riemannian consensus for manifolds with bounded curvature[J]. IEEE Transactions on Automatic Control, 2013, 58(4): 921930.
[38] LIN Z, HAN T, ZHENG R, et al. Distributed localization for 2D sensor networks with bearing-only measurements under switching topologies[J]. IEEE Transactions on Signal Processing, 2016, 64(23): 63456359.
[39] OH K H, FIDAN B, AHN H S. Distributed bearing vector estimation in multi-agent networks[J]. Automatica, 2020, 115: 108895.
[40] CHEN L, CAO M, LI C. Angle rigidity and its usage to stabilize multiagent formations in 2D[J]. IEEE Transactions on Automatic Control, 2021, 66(8): 36673681.
[41] CHEN L, CAO K, XIE L, et al. 3D network localization using angle measurements and reduced communication[J]. IEEE Transactions on Signal Processing, 2022, 70: 24022415.
[42] THUNBERG J, SONG W, MONTIJANO E, et al. Distributed attitude synchronization control of multi-agent systems with switching topologies[J]. Automatica, 2014, 50(3): 832840.
[43] JING G, WAN C, DAI R. Angle-based sensor network localization[J]. IEEE Transactions on Automatic Control, 2022, 67(2): 840855.
[44] MICHIELETTO G, CENEDESE A, FRANCHI A. Bearing rigidity theory in SE(3)[C]. 2016 IEEE 55th Conference on Decision and Control(CDC). Las Vegas: IEEE, 2016: 59505955.
[45] TRON R, VIDAL R. Distributed 3D localization of camera sensor networks from 2D image measurements[J]. IEEE Transactions on Automatic Control, 2014, 59(12): 33253340.
[46] CRISTOFALO E, MONTIJANO E, SCHWAGER M. Consensus-based distributed 3D pose estimation with noisy relative measurements[C]. 2019 IEEE 58th Conference on Decision and Control(CDC). Nice: IEEE, 2019: 26462653.
[47] LEONARDOS S, DANIILIDIS K, TRON R. Distributed 3D Bearing-Only Orientation Localization[C]. 2019 IEEE 58th Conference on Decision and Control(CDC). Nice: IEEE, 2019: 18341841.
[48] TRON R, VIDAL R, TERZIS A. Distributed pose averaging in camera networks via consensus on SE(3)[C]. 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas: IEEE, 2008: 30293032.
[49] PIOVAN G, SHAMES I, FIDAN B, et al. On frame and orientation localization for relative sensing networks[J]. Automatica, 2013, 49: 206213.
[50] CHOUDHARY S, CARLONE L, NIETO C, et al. Distributed mapping with privacy and communication constraints: lightweight algorithms and object-based models[J]. The International Journal of Robotics Research, 2017, 36(12): 12861311.
[51] MONTIJANO E, CRISTOFALO E, ZHOU D, et al. Vision-based distributed formation control without an external positioning system[J]. IEEE Transactions on Robotics, 2016, 32(2): 339351.
[52] LEE B H, AHN H S. Distributed formation control via global orientation estimation[J]. Automatica, 2016, 73: 125129.
[53] EREN T. Cooperative localization in wireless ad hoc and sensor networks using hybrid distance and bearing(angle of arrival) measurements[J]. EURASIP Journal on Wireless Communications and Networking, 2011, 1(72): 118.
[54] XU F, LI X L, XIE L H. Angle-displacement rigidity theory with application to distributed network localization[J]. IEEE Transactions on Automatic Control. 2021, 66(6): 25742587.
[55] LIN Z Y, HAN T R, ZHENG R H, YU C B. Distributed localization with mixed measurements under switching topologies[J]. Automatica. 2017, 76: 251257.
[56] LIN Z, FU M, DIAO Y. Distributed self localization for relative position sensing networks in 2D space[J]. IEEE Transactions on Signal Processing, 2015, 63(14): 37513761.
[57] STACEY G, MAHONY R. The role of symmetry in rigidity analysis: a tool for network localization and formation control[J]. IEEE Transactions on Automatic Control, 2017, 63(5): 13131328.
[58] SRINIVASAN A, TEITELBAUM J, WU J. DRBTS: distributed reputation-based beacon trust system[C]. 2006 2nd IEEE International Symposium on Dependable, Autonomic and Secure Computing. Piscataway: IEEE, 2006: 277283.
[59] SHI C X, YANG G H. Bearing-based reliable cooperative localization for multiagent networks in the presence of malicious measurements[J]. IEEE Transactions on Automatic Control, 2024, 69(6): 35603575.
[60] LAZOS L, POOVENDRAN R. HiRLoc: high-resolution robust localization for wireless sensor networks[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(2): 233246.
[61] WANG R, XU C, SUN J, et al. Cooperative localization for multi-agents based on reinforcement learning compensated filter[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(10): 28202831.
[62] WEBER M, JIN B, LEDERMAN G, et al. Gordian: Formal reasoning-based outlier detection for secure localization[J]. ACM Transactions on Cyber-Physical Systems, 2020, 4(4): 127.
[63] YUAN Y, HUO L, WANG Z, et al. Secure APIT localization scheme against sybil attacks in distributed wireless sensor networks[J]. IEEE Access, 2018, 6: 2762927636.
[64] BEKO M, TOMIC S. Toward secure localization in randomly deployed wireless networks[J]. IEEE Internet of Things Journal, 2021, 8(24): 1743617448.
[65] LAZOS L, POOVENDRAN R. SeRLoc: Robust localization for wireless sensor networks[J]. ACM Transactions on Sensor Networks, 2005, 1(1): 73100.
[66] LAZOS L, POOVENDRAN R. SeRLoc: secure range-independent localization for wireless sensor networks[C]. Proceedings of the 3rd ACM workshop on Wireless security. Philadelphia: ACM, 2004: 2130.
[67] JADLIWALA M, ZHONG S, UPADHYAYA S J, et al. Secure distance-based localization in the presence of cheating beacon nodes[J]. IEEE Transactions on Mobile Computing, 2010,9(6): 810823.
[68] WON J, BERTINO E. Robust sensor localization against known sensor position attacks[J]. IEEE Transactions on Mobile Computing, 2018, 18(12): 29542967.
[69] ZHONG S, JADLIWALA M, UPADHYAYA S, et al. Towards a theory of robust localization against malicious beacon nodes[C]. IEEE INFOCOM 2008The 27th Conference on Computer Communications. Phoenix: IEEE, 2008: 13911399.
[70] MISRA S, XUE G, BHARDWAJ S. Secure and robust localization in a wireless ad hoc environment[J]. IEEE Transactions on Vehicular Technology, 2008, 58(3): 14801489.
[71] SHI C X, YANG G H. Secure bearing-based target localization for multi-agent networks against malicious agents[J]. IEEE Transactions on Automation Science and Engineering, 2023,21(4): 58125825.
[72] CAPKUN S, HUBAUX J P. Secure positioning in wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(2): 221232.
[73] LIU D, NING P, DU W K. Attack-resistant location estimation in sensor networks[C]. IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks. Los Angeles: IEEE, 2005: 99106.
[74] XIAO Q, BU K, WANG Z, et al. Robust localization against outliers in wireless sensor networks[J]. ACM Transactions on Sensor Networks, 2013, 9(2): 126.
[75] LI Z, TRAPPE W, ZHANG Y, et al. Robust statistical methods for securing wireless localization in sensor networks[C]. IPSN 2005.Fourth International Symposium on Information Processing in Sensor Networks. Los Angeles: IEEE, 2005: 9198.
[76] BOUKERCHE A, OLIVEIRA H A B F, NAKAMURA E F, et al. Secure localization algorithms for wireless sensor networks[J]. IEEE Communications Magazine, 2008, 46(4): 96101.
[77] GARG R, VARNA A L, WU M. An efficient gradient descent approach to secure localization in resource constrained wireless sensor networks[J]. IEEE transactions on Information Forensics and Security, 2012, 7(2): 717730.
[1] 陈英鑫, 纪志坚. 切换伪路图下的多智能体能控性[J]. 复杂系统与复杂性科学, 2025, 22(2): 135-144.
[2] 王彩鑫, 杨洪勇, 王丽丽. 基于最小引力路径的异构多智能体聚类的隐私保护[J]. 复杂系统与复杂性科学, 2025, 22(2): 145-150.
[3] 毛子祥, 侯忠生. 动态事件触发下带有扰动的MASs无模型迭代二分一致控制[J]. 复杂系统与复杂性科学, 2025, 22(1): 138-145.
[4] 徐凤, 尹嘉男, 杨文东, 贾萌. 航班延误扰动下空铁联运超网络可靠性分析[J]. 复杂系统与复杂性科学, 2025, 22(1): 50-58.
[5] 刘萌萌, 纪志坚, 刘允刚, 林崇. 含有等容胞腔的多智能体系统的能控性[J]. 复杂系统与复杂性科学, 2025, 22(1): 97-103.
[6] 纪亚楠, 纪志坚. 无向拓扑下多智能体系统目标能控的图论条件[J]. 复杂系统与复杂性科学, 2024, 21(4): 13-20.
[7] 肖朋朋, 纪志坚, 刘允刚, 林崇. InSCC拓扑结构的能控性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 47-55.
[8] 杜向阳, 李伟勋, 陈增强, 张利民. 非线性耦合多智能体系统组编队跟踪控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 72-79.
[9] 冯万典, 彭世国, 曾梓贤. 脉冲控制下半马尔可夫随机MAS的均方一致性[J]. 复杂系统与复杂性科学, 2022, 19(3): 81-87.
[10] 张志伟, 纪志坚. 有向路径下的一类多智能体系统的能控性分析[J]. 复杂系统与复杂性科学, 2022, 19(2): 63-70.
[11] 国俊豪, 纪志坚. 基于NE结果的多智能体系统模型及其能控性[J]. 复杂系统与复杂性科学, 2021, 18(4): 50-57.
[12] 王潇, 纪志坚. 基于MAS的合作—竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
[13] 李英桢, 纪志坚, 刘帅, 杨仪龙. 含时滞多智能体系统的边动态二分一致性[J]. 复杂系统与复杂性科学, 2019, 16(4): 19-30.
[14] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
[15] 仉伟, 纪志坚, 渠继军. 基于领导者对称的多智能体系统可控性研究[J]. 复杂系统与复杂性科学, 2019, 16(2): 52-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed