Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (4): 133-138    DOI: 10.13306/j.1672-3813.2025.04.017
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
阶段结构分数阶生态流行病模型的稳定性分析
豆中丽
重庆财经学院软件学院,重庆 401320
Stability Analysis of Fractional Order Ecological Epidemiological Model with Stage Structure
DOU Zhongli
Chongqing Finance and Economics College, School of Software, Chongqing 401320, China
全文: PDF(1712 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对具有阶段结构、捕食者在妊娠期间含有时滞的分数阶生态流行病模型的稳定性进行研究。通过计算模型的特征根,运用Routh-Hurwitz判据,得到捕食者灭绝平衡点、无病平衡点和地方病平衡点的局部渐近稳定性;运用分数阶分岔理论,得到地方病平衡点附近产生Hopf分支的充分条件。同时研究发现,分数阶阶次对分岔点的影响,随着分数阶阶次的增加,模型的分岔点在减少。最后运用数值模拟验证理论结论的正确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
豆中丽
关键词 分数阶时滞延迟阶段结构生态流行病模型稳定性    
Abstract:In this paper, the stability of a fractional order ecological epidemic model with stage structure and predator delay time during pregnancy was studied. By calculating the characteristic roots of the model and using Routh-hurwitz criterion, it is obtained that the predator extinction equilibrium point, disease-free equilibrium point and endemic equilibrium point are locally asymptotically stability, a sufficient condition for the generation of Hopf bifurcation near the endemic equilibrium is obtained. At the same time, the influence of fractional order on the bifurcation point decreases is discussed, and it is found that the bifurcation point of the system decreases as the order increases. Finally, the validity of the theoretical conclusion is verified by numerical simulation.
Key wordsfractional order    time-delay    stage structure    ecological epidemiological model    stability
收稿日期: 2023-11-27      出版日期: 2025-12-10
ZTFLH:  O175.13  
基金资助:国家自然科学基金(11304403);重庆市教委科技创新项目(KJQN201902105)
作者简介: 豆中丽(1983),女,河南周口人,硕士,副教授,主要研究方向为常微分方程与动力系统。
引用本文:   
豆中丽. 阶段结构分数阶生态流行病模型的稳定性分析[J]. 复杂系统与复杂性科学, 2025, 22(4): 133-138.
DOU Zhongli. Stability Analysis of Fractional Order Ecological Epidemiological Model with Stage Structure[J]. Complex Systems and Complexity Science, 2025, 22(4): 133-138.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.04.017      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I4/133
[1] ANDERSON R M, MAY R M. Infectious Disease of Human Dynamics and Control[M]. Oxford: Oxford University Press, 1991.
[2] XIAO Y N, CHEN L S. Modeling and analysis of a predator-prey model with disease in the prey[J]. Nonlinear Analysis: Theory, Methods and Applications, 1999,36(6):747766.
[3] 房鑫. 用疫苗减轻登革热传播的建模[D].哈尔滨:哈尔滨工程大学,2019.
FANG X. Modeling of vaccinating strategies for mitigating dengue transmission[D]. Harbin: Harbin Engineering University, 2019.
[4] 李录苹,贾建文.一个捕食者具有传染病的生态——流行病模型的分析[J].山西大同大学学报(自然科学版), 2009, 25(6): 13,30.
LI L P, JIA J W. Analysis of one predator-prey model with epidemic in the predator[J].Journal of Shanxi Datong University(Natural Science),2009,25(6):13,30.
[5] 王玲书,张雅南,苏欢.一类具有阶段结构和饱和发生率的生态流行病模型的稳定性[J].工程数学学报, 2019, 36(4): 406418.
WANG L S, ZHANG Y N, SU H. Stability of an eco-epidemiological model with stage structure and saturation incidence[J]. Chinese Journal of Engineering Mathematics,2019,36(4):406418.
[6] 张梅,王玲书,贾美枝.一个捕食者染病、食饵具有阶段结构的生态流行病模型的稳定性[J].工程数学学报, 2022, 39(02): 224236.
ZHANG M, WANG L S, JIA M Z. Stability of an eco-epidemiological model with disease in the predators and stage-structure for the prey[J].Chinese Journal of Engineering Mathematics,2022,39(2):224236.
[7] ALMEID A R, CRUZA M C, MARTINSN B, et al. An epidemiological MSEIR model described by the caputo fractional derivative[J].International Journal of Dynamics and Control, 2019(3):776784.
[8] RIHAN F A, LAKSHMANAN S, HASHISH A H, et al. Fractional-order delayed predator-prey systems with holling type-II functional response[J]. Nonlinear Dynamics, 2015, 80(1): 777789.
[9] 钱蓉,肖敏,王璐.不同阶次下分数阶SIR传染病模型的稳定性分析[J].吉林大学学报(理学版),2021,59(4):796806.
QIANG R, XIAO M, WANG L. Stability analysis of fractional-order SIR epidemic models with different orders[J].Journal of Jilin University(Science Edition),2021,59(4):796806.
[1] 陈秀锋, 赵凤阳, 王成鑫, 肖玉杰, 谷可鑫. 考虑期望视觉角的车辆跟驰建模与分析[J]. 复杂系统与复杂性科学, 2025, 22(3): 122-128.
[2] 李平, 夏磊, 范义刚, 钱锦. 五维磁控忆阻器混沌系统及其图像加密应用[J]. 复杂系统与复杂性科学, 2025, 22(3): 42-48.
[3] 张付臣, 陈松, 周雯静, 肖敏. 广义Lorenz-Stenflo混沌系统的动力学分析与全局指数同步[J]. 复杂系统与复杂性科学, 2025, 22(3): 73-81.
[4] 周宣欣, 吴亚勇, 蒋国平. 两类耦合超图网络状态估计研究[J]. 复杂系统与复杂性科学, 2025, 22(2): 90-96.
[5] 周雯静, 张付臣. 新非线性混沌系统动力学分析及仿真[J]. 复杂系统与复杂性科学, 2025, 22(1): 77-82.
[6] 吴聪玲, 吴召艳. 带耦合时滞的分数阶社团网络的聚类滞后同步[J]. 复杂系统与复杂性科学, 2024, 21(4): 1-5.
[7] 胡行华, 刘盈月. 具有媒体效应的分数阶SAIQR传染病模型[J]. 复杂系统与复杂性科学, 2024, 21(2): 80-88.
[8] 彭巍, 胡远航, 龚壮辉. 生态视角的复杂产品协同设计网络稳定性研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 88-94.
[9] 潘弘杰, 范宏. 考虑网络结构的影子银行与银行系统稳定性研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 41-48.
[10] 王宇, 冯育强. 基于Conformable分数阶导数的COVID-19模型及其数值解[J]. 复杂系统与复杂性科学, 2022, 19(3): 27-32.
[11] 田英楠, 王嘉琪, 张新立. 不同理性预期下量子库诺特模型的动态演化分析[J]. 复杂系统与复杂性科学, 2021, 18(3): 45-50.
[12] 卢冬冬, 吴洁, 刘鹏, 盛永祥. 网络稳定性研究——以AngularJS为例[J]. 复杂系统与复杂性科学, 2020, 17(3): 38-46.
[13] 朱伟, 陈坤, 王谦, 朱弘钊. 基于自适应滑模控制的分数阶蔡氏电路系统动力学分析与控制[J]. 复杂系统与复杂性科学, 2018, 15(2): 88-94.
[14] 陈思谕, 邹艳丽, 王瑞瑞, 谭华珍. 电网输电线路耦合强度分配策略研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 45-53.
[15] 汪慕峰, 韦笃取, 罗晓曙, 张波, 屈莉莉. 基于Lyapunov稳定性理论的星型耦合电动机网络的混沌同步[J]. 复杂系统与复杂性科学, 2017, 14(2): 26-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed