Please wait a minute...
文章检索
复杂系统与复杂性科学  2026, Vol. 23 Issue (1): 60-69    DOI: 10.13306/j.1672-3813.2026.01.008
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
考虑多元变量的世界航空网络综合鲁棒性研究
户佐安a,b,c, 杨江浩a, 邓锦程a
西南交通大学a.交通运输与物流学院;b.综合交通大数据应用技术国家工程实验室;c.综合交通运输智能化国家地方联合工程实验室,成都 611756
Robustness Analysis of the World Airline Network Considering Multiple Variables
HU Zuoana,b,c, YANG Jianghaoa, DENG Jinchenga
a. School of Transportation and Logistics; b. National Engineering Laboratory of Integrated Transportation Big Data Application Technology; c. National United Engineering Laboratory of Integrated and Intelligent Transportation, Southwest Jiaotong University, Chengdu 611756,China
全文: PDF(4057 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 由于传统采用单一指标评价航空网络鲁棒性存在不足,需进一步考虑多元指标及其核心变量,提出综合评价方法,以全面分析与评价网络鲁棒性。考虑剩余节点数量、邻居连边数、最短路径等多元变量建立综合鲁棒性评价指标;设置4种失效策略并对4个网络进行仿真。仿真结果表明:在随机失效情况下,世界航空网络在几乎所有节点失效后综合鲁棒性指标才降至0,与其余3个虚拟网络相比是最具鲁棒性的;在3种蓄意失效情况下,世界航空网络在小规模节点失效时均难以维持鲁棒性,且在20%左右节点失效后网络完全崩溃;在3种蓄意失效策略下世界航空网络综合鲁棒性曲线基本一致,证明了该综合鲁棒性指标的泛用性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
户佐安
杨江浩
邓锦程
关键词 航空运输鲁棒性世界航空网络复杂网络    
Abstract:Due to the inadequacy of using a single indicator to evaluate the air network robustness, it is necessary to further consider multiple indicators and their core variables to propose a comprehensive evaluation method, in order to analyze and evaluate the network robustness comprehensively, this paper considered multiple variables such as the number of remaining nodes, the number of neighbor links, and the shortest path, to establish a comprehensive robustness evaluation index. Set up four failure scenarios and simulated them on the four networks. The simulation results show that, under random failure, the World-Airline Network has the highest robustness among the four networks, and its comprehensive robustness index only drops to zero after almost all nodes fail; under three malicious failure scenarios, the World-Airline Network fails to maintain robustness when a small number of nodes fail, and collapses completely when about 20% of nodes fail; under three malicious failure strategies, the comprehensive robustness curves of the World-Airline Network are basically consistent, which proves the universality of this comprehensive robustness metric.
Key wordsair transportation    robustness    world-airline network    complex network
收稿日期: 2023-10-21      出版日期: 2026-02-13
ZTFLH:  V352  
  N94  
基金资助:四川省自然科学基金(24NSFSC0810);国家重点研发计划项目(2018YFB1601400)
作者简介: 户佐安(1979-),男,湖北黄梅人,博士,副教授,主要研究方向为运输组织理论及系统优化。
引用本文:   
户佐安, 杨江浩, 邓锦程. 考虑多元变量的世界航空网络综合鲁棒性研究[J]. 复杂系统与复杂性科学, 2026, 23(1): 60-69.
HU Zuoan, YANG Jianghao, DENG Jincheng. Robustness Analysis of the World Airline Network Considering Multiple Variables[J]. Complex Systems and Complexity Science, 2026, 23(1): 60-69.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2026.01.008      或      https://fzkx.qdu.edu.cn/CN/Y2026/V23/I1/60
[1] 王亭, 张永, 周明妮, 等. 融合网络拓扑结构特征与客流量的城市轨道交通关键节点识别研究[J]. 交通运输系统工程与信息, 2022, 22(6): 201-211.
WANG T, ZHANG Y, ZHOU M N,et al.Identification of key nodes of urban rail transit integrating network topology characteristics and passenger flow[J].Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (6) :201-211.
[2] ZHOU Y, WANG J, HUANG G Q. Efficiency and robustness of weighted air transport networks[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 122: 14-26.
[3] SUN X, WANDELT S, LINKE F. Temporal evolution analysis of the European air transportation system: air navigation route network and airport network[J]. Transportmetrica B: Transport Dynamics, 2015, 3(2): 153-168.
[4] HSU C I, SHIH H H. Small-world network theory in the study of network connectivity and efficiency of complementary international airline alliances[J]. Journal of Air Transport Management, 2008, 14(3): 123-129.
[5] ZHOU Y, KUNDU T, QIN W, et al. Vulnerability of the worldwide air transportation network to global catastrophes such as COVID-19[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 154: 102469.
[6] SUN X, GOLLNICK V, WANDELT S. Robustness analysis metrics for worldwide airport network: a comprehensive study[J]. Chinese Journal of Aeronautics, 2017, 30(2): 500-512.
[7] DU W B, ZHOU X L, LORDAN O, et al. Analysis of the Chinese airline network as multi-layer networks[J]. Transportation Research Part E: Logistics and Transportation Review, 2016, 89: 108-116.
[8] PALEARI S, REDONDI R, MALIGHETTI P. A comparative study of airport connectivity in China, Europe and US: Which network provides the best service to passengers?[J]. Transportation Research Part E: Logistics and Transportation Review, 2010, 46(2): 198-210.
[9] LORDAN O, SALLAN J M, SIMO P, et al. Robustness of the air transport network[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 68: 155-163.
[10] ZHOU Y, LI S, KUNDU T, et al. The impact of network topology on air transportation robustness to pandemics[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(3): 2249-2261.
[11] 李思平, 周耀明. 全球疫情下的中国内地航空网络对外连通性[J]. 航空学报, 2021, 42(6): 568-580.
LI S P, ZHOU Y M. External connectivity of Chinese mainland’s air transport network in COVID-19 pandemic[J].Acta Aeronautica et Astronautica Sini-ca, 2021, 42(6):568-580.
[12] 彭挺, 张亚平, 程绍武. 基于惩罚因子的层级式航线网络鲁棒性分析[J]. 交通运输系统工程与信息, 2016, 16(3): 187-193.
PENG T, ZHANG Y P, CHENG S W. Robustness analysis of hierarchical airline network based on penalty factor[J].Journal of Transportation Systems Engineering and Information Technology, 2016, 16(3):187-193.
[13] WANG Y, Cao X, Qin F, et al. Vulnerability analysis of the Chinese coupled aviation and high-speed railway network[J]. Chinese Journal of Aeronautics, 2022, 35(12): 189-199.
[14] GAO Y, LIANG C, ZHOU J, et al. Robustness optimization of aviation-high-speed rail coupling network[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 610: 128406.
[15] 王诺, 董玲玲, 吴暖, 等. 蓄意攻击下全球集装箱海运网络脆弱性变化[J]. 地理学报, 2016, 71(2): 293-303.
WANG N, DONG L L, WU N,et al.The change of global container shipping network vulnerability under intentional attack[J].Acta Geographica Sinica, 2016, 71(2):293-303.
[16] WANDELT S, SUN X, FENG D, et al. A comparative analysis of approaches to network-dismantling[J]. Scientific Reports, 2018, 8(1): 13513.
[1] 孙小慧, 刘毅, 米玉梅, 吕凯. 韧性视角下城市地铁与常规公交网络关键站点及线路识别[J]. 复杂系统与复杂性科学, 2026, 23(1): 26-36.
[2] 胡金梅, 邹艳丽, 王鸿俊, 张海. 基于二阶邻居负载再分配的电网级联故障研究[J]. 复杂系统与复杂性科学, 2026, 23(1): 1-9.
[3] 潘文祥, 李东艳, 孙思翔, 佟宁. 一种基于社团外围节点的网络鲁棒性优化策略[J]. 复杂系统与复杂性科学, 2026, 23(1): 70-78.
[4] 聂廷远, 王艳伟, 聂晶晶, 刘鹏飞. 基于注意力机制和复杂网络的FPGA可布性预测[J]. 复杂系统与复杂性科学, 2026, 23(1): 53-59.
[5] 孙文静, 余路粉, 潘文林, 蓝春江. 基于节点影响因子和贡献因子的复杂网络重要节点识别[J]. 复杂系统与复杂性科学, 2026, 23(1): 87-95.
[6] 牟奇锋, 李晓倩. 基于邻接矩阵的复杂网络演化融合迭代方法[J]. 复杂系统与复杂性科学, 2026, 23(1): 79-86.
[7] 韩世翔, 闫光辉, 裴华艳. 复杂网络上双向免疫对传染病传播的影响[J]. 复杂系统与复杂性科学, 2025, 22(4): 55-62.
[8] 章浩淳, 寇博潇, 张泰杰, 唐智慧. 基于Granger Causality的滑坡机理网络客观权值确定方法[J]. 复杂系统与复杂性科学, 2025, 22(4): 63-70.
[9] 余文倩, 马福祥, 陈阳, 马秀娟. 基于自适应的高阶网络鲁棒性分析[J]. 复杂系统与复杂性科学, 2025, 22(4): 15-23.
[10] 周青, 李依函, 陈文冲. “互联网+”企业创新生态系统网络演化分析[J]. 复杂系统与复杂性科学, 2025, 22(4): 1-7.
[11] 卢新彪, 刘泽诚, 陈贵允, 杨铁流, 高兴. 基于图卷积网络的复杂网络能控性提升方法[J]. 复杂系统与复杂性科学, 2025, 22(4): 24-28.
[12] 陶昭, 侯忠生. 复杂网络的无模型自适应牵制控制[J]. 复杂系统与复杂性科学, 2025, 22(2): 120-127.
[13] 李伟莎, 王淑良, 宋博. 基于强化学习风电并网策略下的韧性分析[J]. 复杂系统与复杂性科学, 2025, 22(2): 128-134.
[14] 张明磊, 宋玉蓉, 曲鸿博. 基于图注意力机制的复杂网络关键节点识别[J]. 复杂系统与复杂性科学, 2025, 22(2): 113-119.
[15] 张琦, 汪小帆. 复杂网络观点动力学分析与干预若干研究进展[J]. 复杂系统与复杂性科学, 2025, 22(2): 31-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed