Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (4): 8-17    DOI: 10.13306/j.1672-3813.2016.04.002
  本期目录 | 过刊浏览 | 高级检索 |
基于关联分布函数的相互依赖网络脆弱性分析
金伟新1,2, 宋凭1,3, 刘国柱1
1.电子信息系统复杂电磁环境效应国家重点实验室,河南 洛阳 471003;
2.国防大学信息作战与指挥训练教研部,北京 100091;
3.西安通信学院军事通信指挥系,西安 710106
The Analysis for the Vulnerability of the Interdependent and Interconnected Network of Networks Based on the Correlation Degree Distribution Functions
JIN Weixin1,2, SONG Ping1,3, LIU Guozhu1
1. The State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System(CEMEE),Luoyang 471003, China;
2. The Information Operations and Command Training Department, National Defense University,Beijing 100091,China;
3. The Military Communication Comand Department, Xi’an Communication Institute,Xi’an 710106,China
全文: PDF(1459 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 首先综述了国内外互依网络级联脆性的研究现状,分析目前研究取得的成果与问题,而后在此基础上,针对目前研究的薄弱环节——互依网络之间的关联机制与关联机理进行了深入分析与重点研究,构建了基于关联分布函数的相互依赖网络脆弱性分析模型,并给出了互依网络脆弱性评估的六类判据。最后,给出了研究结论与建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金伟新
宋凭
刘国柱
关键词 互依网络级联失效脆弱性模型    
Abstract:In this paper, research status quo on the cascading vulnerability of interdependent networks is reviewed firstly. Secondly,its progress and unsolved problem are analyzed.Based on this,the blind area of the present interdependent networks vulnerability research—correlation mechanism and correlation principle of interdependent networks are deeply analyzed and studied,and the vulnerability analysis models which based on the correlation degree distribution functions are built,at the same time,six criteria of interdependent networks vulnerability evaluation are summed up.Lastly,the conclusion and proposal are put forward.
Key wordsinterdependent and interconnected networks    cascade failure    vulnerability    model
收稿日期: 2014-05-30      出版日期: 2025-02-25
ZTFLH:  N94  
基金资助:CEMEE国家实验室开放课题基金(CEMEE2014K0201A);国家自然科学基金(60974080)
作者简介: 金伟新(1963-),男,河南光山人,副教授,大校,主要研究方向为相互关联与相互依赖网络脆弱性、复杂系统建模与仿真。
引用本文:   
金伟新, 宋凭, 刘国柱,. 基于关联分布函数的相互依赖网络脆弱性分析[J]. 复杂系统与复杂性科学, 2016, 13(4): 8-17.
JIN Weixin, SONG Ping, LIU Guozhu. The Analysis for the Vulnerability of the Interdependent and Interconnected Network of Networks Based on the Correlation Degree Distribution Functions[J]. Complex Systems and Complexity Science, 2016, 13(4): 8-17.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.04.002      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I4/8
[1] Helbing D. Globally networked risks and how to respond[J].Nature , 2013,497:51-59.
[2] Vespignani A. The fragility of interdependency[J].Nature ,2010,464:984-985.
[3] Buldyrev S V, Parshani R ,Paul G,et al. Catastrophic cascade of failures in interdependent networks[J].Nature, 2010 ,464:1025-1028.
[4] Parshani R, Buldyrev S V, Havlin S.Interdependent networks:reducing the coupling strength leads to a change from a first to second order percolation transition[J].Physical Review Letters, 2010,105(4): 048701.
[5] Bashan A, Parshani R, Havlin S. Percolation in networks composed of connectivity and dependency links[J].Physical Review E ,2011,83(5):051127.
[6] Shao J, Buldyrev S V, Havlin S,et al. Cascade of failures in coupled network systems with multiple support-dependence relations[J].Physical Review E,2011,83(3):036116.
[7] Schneider C M,André A,Andrade M S,et al. Mitigation of malicious attacks on networks[J].PNAS ,2011,108(10) :3838-3841.
[8] Gao J, Buldyrev S V, Stanley H E ,et al. Networks formed from interdependent networks[J].Nature Physics,2012,8:40-48. http://www.nature.com/naturephysics.
[9] Li W, Bashan A, Buldyrev S V,et al. Cascading failures in interdependent lattice networks:the critical role of the length of dependency links[J].Physical Review Letters,2012,108(22):228702.
[10] Gao J, Buldyrev S V, Havlin S,et al. Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes[J].Physical Review E,2012, 85(6):066134.
[11] Dong G, Gao J, Jin R,et al. Robustness of network of networks under targeted attack[J].Physical Review E ,2013,87: 052804.
[12] Zhou D, Gao J, Stanley H E ,et al. Percolation of partially interdependent scale-free networks[J].Physical Review E ,2013,87(5):052812.
[13] Hu Y, Zhou D,Zhang R,et al. Percolation of interdependent networks with intersimilarity[J].Physical Review E, 2013,88(5):052805.
[1] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[2] 杨忠保, 刘泽山, 潘春燕, 张大林. 修正SEIQRDP传播模型的构建与分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 34-41.
[3] 李长升, 索琪, 王梓豪. 基于SAOM模型的主体协同创新网络演化机理[J]. 复杂系统与复杂性科学, 2024, 21(3): 62-68.
[4] 周斌, 马福祥, 高淑洁, 马秀娟, 李明杰. 超边内部结构对无标度超网络鲁棒性的影响[J]. 复杂系统与复杂性科学, 2024, 21(3): 1-8.
[5] 高天, 许小可. 基于社团结构的抑制校园新冠传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 9-16.
[6] 张成军, 姚辉, 雷毅, 夏登辉, 李琪, 沈鑫禹, 钱铭, 余文斌. 高低阶耦合网络的鲁棒性研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 17-22.
[7] 崔孝凯, 王庆芝, 刘其朋. 基于数据驱动的锂电池健康状态预测[J]. 复杂系统与复杂性科学, 2024, 21(3): 154-159.
[8] 孔令仁, 亓庆源. 含参数不确定及时滞的线性系统自适应模型预测控制[J]. 复杂系统与复杂性科学, 2024, 21(3): 136-143.
[9] 胡行华, 刘盈月. 具有媒体效应的分数阶SAIQR传染病模型[J]. 复杂系统与复杂性科学, 2024, 21(2): 80-88.
[10] 刘晓燕, 庞雅如, 谢桂生. 基于组织-技术依存网络的技术融合机理[J]. 复杂系统与复杂性科学, 2024, 21(1): 58-65.
[11] 汪瑜, 雷迪, 于娇娇, 温国兵. 网络视角下航空公司竞争态势及影响因素研究[J]. 复杂系统与复杂性科学, 2024, 21(1): 66-73.
[12] 李本先, 方锦清. 恐怖组织多层网络模型及其特性[J]. 复杂系统与复杂性科学, 2023, 20(4): 56-60.
[13] 朱懋昌, 宾晟, 孙更新. 基于COVID-19传播特性的传染病模型的构建与研究[J]. 复杂系统与复杂性科学, 2023, 20(2): 29-37.
[14] 桂水荣, 蓝天飞, 陈水生, 葛世祺. 考虑车辆异质性的堵塞交通流模型研究[J]. 复杂系统与复杂性科学, 2023, 20(2): 98-104.
[15] 卢炯, 许新建. 协同对社会传播的影响[J]. 复杂系统与复杂性科学, 2022, 19(3): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed