Please wait a minute...
文章检索
复杂系统与复杂性科学  2026, Vol. 23 Issue (1): 153-159    DOI: 10.13306/j.1672-3813.2026.01.019
  研究前沿 本期目录 | 过刊浏览 | 高级检索 |
含全状态约束的非线性系统固定时间控制
郭庆a, 蔡明洁a,b, 王保防a,b
青岛大学a.自动化学院;b.山东省工业控制技术重点实验室,山东 青岛 266071
Fixed-time Control of Nonlinear Systems with Full State Constraints Systems
GUO Qinga, CAI Mingjiea,b, WANG Baofanga,b
a. School of Automation, b. Shandong Provincial Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071, China
全文: PDF(1756 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对含全状态约束的非线性系统固定时间控制问题,引入一种新型的非线性映射来处理系统状态存在约束的问题,并且利用此非线性映射提出一种固定时间控制设计方法。首先,建立具有全状态约束非线性系统的数学模型;其次,结合时变状态约束条件采用非线性映射技术将原本存在约束的系统转换为相应的无约束系统;然后,利用径向基函数神经网络设计基于反步法的固定时间控制律;最终,采用Lyapunov理论证明系统的稳定性,并结合具体仿真算例验证了所提控制方法的有效性和可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
GUO Qing
cAI Mingjie
WANG Baofanga
b
关键词 非线性系统全状态约束固定时间神经网络反步法    
Abstract:A novel nonlinear mapping is introduced to address the fixed-time control problem of nonlinear systems with full state constraints, and a fixed-time control design method is proposed using the nonlinear mapping method. Firstly, We establish a mathematical model of a nonlinear system with full state constraints; Secondly, by combining time-varying state constraints and using nonlinear mapping techniques, the system with existing constraints is transformed into a corresponding unconstrained system; Then, a fixed-time control law based on backstepping is designed using a radial basis function neural network; Finally, the stability of the system is demonstrated using Lyapunov theory, and the effectiveness and feasibility of the proposed control method are verified through specific simulation examples.
Key wordsnonlinear system    full state constraint    fixed-time    neural network    backstepping
收稿日期: 2023-11-02      出版日期: 2026-02-13
ZTFLH:  TP273  
  TP13  
基金资助:国家自然科学基金(62103212);山东省自然科学基金(ZR2019BF038);山东省科技支撑计划青年创新团队项目(2019KJN033)
通讯作者: 蔡明洁(1989-),女,江苏徐州人,博士,副教授,主要研究方向为非线性系统控制、多智能体系统有限时间协调控制等。   
作者简介: 郭 庆(1998-),男,山东滨州人,硕士研究生,主要研究方向为非线性系统固定时间控制研究等。
引用本文:   
郭庆, 蔡明洁, 王保防. 含全状态约束的非线性系统固定时间控制[J]. 复杂系统与复杂性科学, 2026, 23(1): 153-159.
GUO Qing,cAI Mingjie, WANG Baofanga,b. Fixed-time Control of Nonlinear Systems with Full State Constraints Systems[J]. Complex Systems and Complexity Science, 2026, 23(1): 153-159.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2026.01.019      或      https://fzkx.qdu.edu.cn/CN/Y2026/V23/I1/153
[1] 王宁, 王仁慧, 刘永金. 推进器饱和/故障下的无人艇固定时间指定性能容错控制[J]. 控制理论与应用, 2023, 40(7): 1304-1314.
WANG N, WANG R H, LIU Y J. Fixed-time specified performance fault-tolerance control of an unmanned surface vehicle with thruster saturations/faults[J]. Control Theory and Applications, 2023, 40(7): 1304-1314.
[2] 刘浩鸣, 刘朝涛, 杜子学,等. 跨座式捷运车辆编组分布式固定时间协同巡航控制[J]. 控制理论与应用, 2023, 40(7):1296-1303.
LIU H M, LIU C T, DU Z X, et al. Distributed fixed-time cooperative cruise control for straddle rapid-transit vehicle formation[J]. Control Theory and Applications, 2023, 40(7): 1296-1303.
[3] 孙玉娇, 杨洪勇, 于美妍. 基于领航跟随的多机器人系统有限时间一致性控制研究[J]. 复杂系统与复杂性科学, 2020, 17(4): 66-72.
SUN Y J, YANG H Y, YU M. The finite time consistency control of multi-robot systems based on leader-following systems based on leader-following[J]. Complex Systems and Complexity Science, 2020, 17(4): 66-72.
[4] 杜向阳, 李伟勋, 陈增强,等. 非线性耦合多智能体系统组编队跟踪控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 72-79.
DU X Y, LI W X, CHEN Z Q, el at. Group formation tracking control of nonlinear coupled multi-agent systems[J]. Complex Systems and Complexity Science, 2022, 19(4): 72-79.
[5] POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2106-2110.
[6] LOPEZ-RAMIREZ F, POLYAKOV A, EFIMOV D, et al. Finite-time and fixed-time observer design: implicit Lyapunov function approach[J]. Automatica, 2018, 87: 52-60.
[7] NEA B, AP A, DE A, et al. Boundary time-varying feedbacks for fixed-time stabilization of constant-parameter reaction-diffusion systems[J]. Automatica, 2019, 103: 398-407.
[8] XU J. Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions[J]. IEEE Transactions on Automatic Control, 2019, 64(7): 3046-3053.
[9] CHEN Z Q, SUN Z Y. Fixed-time stabilisation for a class of high-order non-linear systems[J]. IET Control Theory & Applications, 2018, 12(18): 2578-2587.
[10] NGO K B, MAHONY R, JIANG Z P. Integrator backstepping using barrier functions for systems with multiple state constraints[C]. Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain: IEEE: 2005, 8306-8312.
[11] 郭涛, 王丁磊, 王爱民. 基于非线性映射的约束系统自适应反推控制[J]. 自动化学报, 2013, 39(9): 1558-1563.
GUO T, WANG D L, WANG A M. Adaptive backstepping control for constrained systems using nonlinear mapping[J]. Acta Automatica Sinica, 2013, 39(9): 1558-1563.
[12] 宋卓越, 马慧颖. 基于新型双曲正切趋近律的固定/有限时间姿态控制[J]. 北京理工大学学报, 2023, 4: 1-11.
SONG Z Y, MA H Y. Fixed/Finite-time attitude control based on a novel hyperbolic tangent reaching law[J]. Transactions of Beijing Institute of Technology, 2023, 4: 1-11.
[13] WANG C, YAN L. Decentralized adaptive tracking control for a class of interconnected nonlinear time-varying systems[J]. Automatica, 2015, 54: 16-24.
[14] ZHENG Z, XIA Y, FU M. Attitude stabilization of rigid spacecraft with finite-time convergence[J]. International Journal of Robust and Nonlinear Control, 2011, 21(6): 686-702.
[15] CHEN M, WANG H, LIU X. Adaptive fuzzy practical fixed-time tracking control of nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 2019, 29(3): 664-673.
[16] WANG L X, MENDEL J M. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning[J]. IEEE Transactions on Neural Networks, 1992, 3(5): 807-14.
[17] WANG F, LAI G Y. Fixed-time control design for nonlinear uncertain systems via adaptive method[J]. Systems and Control Letters, 2020, 140.
[18] 王敏, 林梓欣, 王聪,等. 基于外环速度补偿的封闭机器人确定学习控制[J]. 自动化学报, 2023, 49(9): 1904-1914.
WANG M, LIN Z X, WANG C, et al. Deterministic learning of manipulators with closed architecture based on outer-loop speed compensation control[J]. Acta Automatica Sinica, 2023, 49(9): 1904-1914.
[19] ZHANG F K, WANG C. Deterministic learning from neural control for uncertain nonlinear pure-feedback systems by output feedback[J]. International Journal of Robust and Nonlinear Control, 2020, 30(7):2701-2718.
[20] CAI M J, XIANG Z R. Adaptive practical finite-time stabilization for uncertain nonstrict feedback nonlinear systems with input nonlinearity[J]. IEEE Transactions on Systems, Man, and Cybernetics-Systems, 2017, 47(7): 1668-1678.
[1] 高瑞, 孙更新, 宾晟. 融合邻域关系和实体的知识图谱补全模型[J]. 复杂系统与复杂性科学, 2026, 23(1): 138-145.
[2] 聂廷远, 王艳伟, 聂晶晶, 刘鹏飞. 基于注意力机制和复杂网络的FPGA可布性预测[J]. 复杂系统与复杂性科学, 2026, 23(1): 53-59.
[3] 罗孙逍宇, 朱柯欣, 陈天智, 赵福钰, 赵谅. 带有网络故障的混沌系统自适应滑模容错控制[J]. 复杂系统与复杂性科学, 2025, 22(4): 154-160.
[4] 赵文炎, 钟诚, 田殿雄, 卢泽钰, 李勇. 基于混合卷积神经网络特征增强的目标识别算法[J]. 复杂系统与复杂性科学, 2025, 22(3): 65-72.
[5] 韩忠明, 张舒群, 刘燕, 胡启文, 杨伟杰. 基于二部联合网络的属性缺失图学习方法[J]. 复杂系统与复杂性科学, 2025, 22(2): 55-63.
[6] 张元东, 张先杰, 张若楠, 张海峰. 基于多层超图卷积神经网络的故障诊断方法[J]. 复杂系统与复杂性科学, 2025, 22(1): 131-137.
[7] 崔孝凯, 王庆芝, 刘其朋. 基于数据驱动的锂电池健康状态预测[J]. 复杂系统与复杂性科学, 2024, 21(3): 154-159.
[8] 邓中乙. 面向磨煤机组故障诊断的聚类粗化图模型[J]. 复杂系统与复杂性科学, 2024, 21(1): 152-158.
[9] 李若晨, 肖人彬. 基于改进狼群算法优化LSTM网络的舆情演化预测[J]. 复杂系统与复杂性科学, 2024, 21(1): 1-11.
[10] 邱长滨, 王庆芝, 刘其朋. 基于改进NetVLAD图像特征提取的回环检测算法[J]. 复杂系统与复杂性科学, 2023, 20(4): 92-97.
[11] 赵薇, 李建波, 吕志强, 董传浩. 融合时间和地理信息的兴趣点推荐研究[J]. 复杂系统与复杂性科学, 2022, 19(4): 25-31.
[12] 杜向阳, 李伟勋, 陈增强, 张利民. 非线性耦合多智能体系统组编队跟踪控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 72-79.
[13] 李炎, 李宪, 杨明业, 孙国庆. 基于概率优化的神经网络模型组合算法[J]. 复杂系统与复杂性科学, 2022, 19(3): 104-110.
[14] 于美妍, 杨洪勇, 孙玉娇. 基于Backstepping的三轮机器人编队控制[J]. 复杂系统与复杂性科学, 2021, 18(3): 28-34.
[15] 徐凯旋, 李宪, 潘亚磊. 基于双向编码转换器和文本卷积神经网络的微博评论情感分类[J]. 复杂系统与复杂性科学, 2021, 18(2): 89-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed