Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (1): 138-145    DOI: 10.13306/j.1672-3813.2025.01.018
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
动态事件触发下带有扰动的MASs无模型迭代二分一致控制
毛子祥, 侯忠生
青岛大学自动化学院,山东 青岛 266071
Dynamic Event Triggered Based Model-free Iterative Bipartite Consensus Control for MASs with Disturbance
MAO Zixiang, HOU Zhongsheng
College of Automation, Qingdao University, Qingdao 266071, China
全文: PDF(2331 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对带有不可测外部扰动的复杂非线性多智能体系统(Multi-agent Systems, MASs)的二分一致控制问题,提出了一种动态事件触发型数据驱动控制方案。利用伪偏导数将带有外部扰动的MASs动力学模型转化为等效的数据模型,并借助径向基函数神经网络对外部扰动的变化量进行估计。基于上述数据模型,利用无模型自适应迭代学习算法并结合动态事件触发策略,提出动态事件触发型无模型迭代二分一致控制方案,并给出了所提控制方案的稳定性分析。仿真结果验证了控制方案的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛子祥
侯忠生
关键词 多智能体系统二分一致控制无模型自适应迭代学习控制动态事件触发外部扰动    
Abstract:A data-driven control scheme based on dynamic event triggered strategy is proposed for bipartite consensus control of complex nonlinear MASs with unmeasurable external disturbance. The dynamic model of MASs with external disturbances is transformed into an equivalent data model using pseudo partial derivative, and radial basis function neural network is used to estimate the variation of unmeasured external disturbance. Based on the above data model, utilizing model free adaptive iterative learning algorithm combined with dynamic event triggered strategy, a dynamic event triggered based model-free iterative bipartite consensus control scheme is proposed. Then, the stability analysis of the proposed control scheme is given. The effectiveness of this control scheme is verified by simulation.
Key wordsmulti-agent systems    bipartite consensus control    model-free adaptive iterative learning control    dynamic event triggered    external disturbance
收稿日期: 2023-06-20      出版日期: 2025-04-27
ZTFLH:  TP13  
  TP18  
基金资助:国家自然科学基金(61833001);青岛大学系统+项目(XT2024101)
通讯作者: 侯忠生(1962-),男,黑龙江望奎人,博士,教授,主要研究方向为无模型自适应控制,数据驱动控制等。   
作者简介: 毛子祥(1999-),男,安徽滁州人,硕士研究生,主要研究方向为无模型自适应控制,多智能体系统二分一致控制。
引用本文:   
毛子祥, 侯忠生. 动态事件触发下带有扰动的MASs无模型迭代二分一致控制[J]. 复杂系统与复杂性科学, 2025, 22(1): 138-145.
MAO Zixiang, HOU Zhongsheng. Dynamic Event Triggered Based Model-free Iterative Bipartite Consensus Control for MASs with Disturbance[J]. Complex Systems and Complexity Science, 2025, 22(1): 138-145.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.01.018      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I1/138
[1] AMIRKHANI A, BARSHOOI A H. Consensus in multi-agent systems: a review[J]. Artificial Intelligence Review, 2022, 55(5): 3897-3935.
[2] OH K K, PARK M C, AHN H S. A survey of multi-agent formation control [J]. Automatica, 2015, 53: 424-440.
[3] 杨盼盼, 刘明雍, 雷小康, 等. 群集系统分群行为建模与控制研究进展[J].控制与决策, 2016, 31(2): 193-206.
YANG P P, LIU M Y, LEI X K, et al. Progress in modeling and control of fission behavior for flocking system[J]. Control and Decision, 2016, 31(2): 193-206.
[4] ALTAFINI C. Consensus problems on networks with antagonistic interactions[J]. IEEE Transactions on Automatic Control, 2013, 58(4): 935-946.
[5] CHIPADE V S, PANAGOU D. Multiagent planning and control for swarm herding in 2-D obstacle environments under bounded inputs[J]. IEEE Transactions on Robotics, 2021, 37(6):1956-1972.
[6] FOURNARIS A P, LALOS A S, SERPANOS D. Generative adversarial networks in AI-enabled safety-critical systems: friend or foe? [J]. Computer, 2019, 52(9): 78-81.
[7] XU D W, PENG P, WEI C C, et al. Road traffic network state prediction based on a generative adversarial network[J]. IET Intelligent Transport Systems, 2020, 14(10): 1286-1294.
[8] 王潇, 纪志坚. 基于MAS的合作-竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
WANG X, JI Z J.Cooperative competitive formation based on MAS[J]. Complex Systems and Complexity Science, 2021, 18(1): 8-14.
[9] QIN J H, FU W M, ZHENG W X, et al. On the bipartite consensus for generic linear multiagent systemswith input saturation[J]. IEEE Transactions on Cybernetics, 2017, 47(8): 1948-1958.
[10] MENG Z Y, SHI G D, JOHANSSON K H, et al. Behaviors of networks with antagonistic interactions and switching topologies[J]. Automatica, 2016, 73: 110-116.
[11] AHN H S, MOORE K L, CHEN Y Q. Trajectory keeping in satellite formation flying via robust periodic learning control [J]. International Journal of Robust and Nonlinear Control, 2010, 20(14): 1655-1666.
[12] LÜ Y K, ZHANG H, HUANG C, et al. Distributed localization of multiagent systems with imperfect channels based on iterative learning [J]. IEEE Transactions on Industrial Electronics, 2022, 69(10): 10521-10529.
[13] LI J S, LIU S Y, LI J M. Observer-based distributed adaptive iterative learning control for linear multi-agent systems[J]. International Journal of Systems Science, 2017, 48(14): 2948-2955.
[14] JIN X. Adaptive iterative learning control for high-order nonlinear multi-agent systems consensus tracking[J]. Systems and Control Letters, 2016, 89: 16-23.
[15] LIU K, JI Z. Dynamic event-triggered consensus of general linear multi-agent systems with adaptive strategy[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(8): 3440-3444.
[16] YI X, LIU K, DIMAROGONAS D V, et al. Dynamic event-triggered and self-triggered control for multi-agent systems[J]. IEEE Transactions on Automatic Control, 2019, 64(8): 3300-3307.
[17] LIN N, LING Q. Dynamic Periodic Event-triggered consensus protocols for Linear multiagent systems with network delay[J]. IEEE Systems Journal, 2023, 17(1): 1204-1215.
[18] 王海, 刘根锋, 侯忠生. 高速列车数据驱动无模型自适应容错控制[J]. 控制与决策, 2022, 37(5): 1127-1136.
WANG H, LIU G F, HOU Z S. Data-drivenmodel-free adaptive fault tolerant control for high-speed trains[J]. Control and Decision, 2022, 37(5): 1127-1136.
[19] LIU S D, HOU Z S, ZHANG X, et al.Model-free adaptive control method for a class of unknown MIMO systems with measurement noise and application to quadrotor aircraft[J]. IET Control Theory &Applications, 2020, 14(15): 2084-2096.
[20] 王文佳, 侯忠生. 基于无模型自适应控制的自动泊车方案[J]. 控制与决策, 2022, 37(8): 2056-2066.
WANG W J, HOU Z S.Model-free adaptive control based automatic parking scheme[J]. Control and Decision, 2022, 37(8): 2056-2066.
[21] LIANG J Q, BU X H, CUI L Z, et al. Data-driven bipartite formation for a class of nonlinear MIMO multiagent systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(6): 3161-3173.
[22] ZHAO H R, PENG L, YU H N, et al. Data driven distributed bipartite consensus tracking for nonlinear multiagent systems via iterative learning control [J]. IEEE Access, 2020, 8: 144718-144729.
[23] REN Y, HOU Z S. Robustmodel-free adaptive iterative learning formation for unknown heterogeneous non-linear multi-agent systems[J]. IET Control Theory &Applications, 2020, 14(4): 654-663.
[24] LIU T, HOU Z S.Model-free adaptive iterative learning containment control for unknown heterogeneous nonlinear MASs with disturbances[J]. Neurocomputing, 2023, 515: 121-132.
[25] HUA C C, QIU Y F, GUAN X P. Event-triggered iterative learning containment control ofmodel-free multiagent Systems[J]. IEEE Transactions on Systems, Man, and Cybernetics-Systems, 2021, 51(12): 7719-7726.
[1] 刘萌萌, 纪志坚, 刘允刚, 林崇. 含有等容胞腔的多智能体系统的能控性[J]. 复杂系统与复杂性科学, 2025, 22(1): 97-103.
[2] 纪亚楠, 纪志坚. 无向拓扑下多智能体系统目标能控的图论条件[J]. 复杂系统与复杂性科学, 2024, 21(4): 13-20.
[3] 肖朋朋, 纪志坚, 刘允刚, 林崇. InSCC拓扑结构的能控性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 47-55.
[4] 杜向阳, 李伟勋, 陈增强, 张利民. 非线性耦合多智能体系统组编队跟踪控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 72-79.
[5] 冯万典, 彭世国, 曾梓贤. 脉冲控制下半马尔可夫随机MAS的均方一致性[J]. 复杂系统与复杂性科学, 2022, 19(3): 81-87.
[6] 张志伟, 纪志坚. 有向路径下的一类多智能体系统的能控性分析[J]. 复杂系统与复杂性科学, 2022, 19(2): 63-70.
[7] 国俊豪, 纪志坚. 基于NE结果的多智能体系统模型及其能控性[J]. 复杂系统与复杂性科学, 2021, 18(4): 50-57.
[8] 王潇, 纪志坚. 基于MAS的合作—竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
[9] 李英桢, 纪志坚, 刘帅, 杨仪龙. 含时滞多智能体系统的边动态二分一致性[J]. 复杂系统与复杂性科学, 2019, 16(4): 19-30.
[10] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
[11] 仉伟, 纪志坚, 渠继军. 基于领导者对称的多智能体系统可控性研究[J]. 复杂系统与复杂性科学, 2019, 16(2): 52-59.
[12] 王品, 姚佩阳. 具有不同输入时延的二阶多智能体系统一致性[J]. 复杂系统与复杂性科学, 2016, 13(4): 102-107.
[13] 李勃, 陈增强, 刘忠信, 张青. 含时延的多智能体系统的多静态领导者包容控制[J]. 复杂系统与复杂性科学, 2016, 13(2): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed